In Proc. 3rd Symp. on Networked Systems Design and Impleriten{siiSDI) San Jose, CA, May, 2006

Pip: Detecting the Unexpected in Distributed Systems

Patrick Reynolds Charles Killiari, Janet L. Wienér
Jeffrey C. Mogul, Mehul A. Shak and Amin Vahdadt

*Duke University TUC San Diego *HP Labs, Palo Alto

Abstract Bugs in distributed systems can affect structure, per-
Bugs in distributed systems are often hard to find.formance, or both. A structural bug results in process-
Many bugs reflect discrepancies between a system'’s béag or communication happening at the wrong place or
havior and the programmer’s assumptions about that ben the wrong order. A performance bug results in pro-
havior. We present Plpan infrastructure for comparing cessing taking too much or too little of any important
actual behavior and expected behavior to expose strugesource. For example, a request that takes too long may
tural errors and performance problems in distributed sysindicate a bottleneck, while a request that finishes too
tems. Pip allows programmers to express, in a declaraquickly may indicate truncated processing or some other
tive language, expectations about the system’s commungerror. Pip supports expressing expectations about both
cations structure, timing, and resource consumption. Pigtructure and performance and so can find a wide variety
includes system instrumentation and annotation tools t@f bugs.
log actual system behavior, and visualization and query We wrote Pip for three broad types of users:
tools for exploring expected and unexpected behdvior o original developers, verifying or debugging their
Pip allows a developer to quickly understand and debug own system;
both familiar and unfamiliar systems. e secondary developers, learning about an existing
We applied Pip to several applications, including system; and
FAB, SplitStream, Bullet, and RanSub. We generated e system maintainers, monitoring a system for
most of the instrumentation for all four applications au- changes.
tomatically. We found the needed expectations easy to experience shows three major benefits of Pip.
write, sta_rting in_ each case with automaticqllygenerateq:irst’ expectations are a simple and flexible way to ex-
expectations. Pip found unexpected behavior in each agsyess system behavior. Second, automatically checking
plication, and helped to isolate the causes of poor perforaypectations helps users find bugs that other approaches

mance and incorrect behavior. would not find or would not find as easily. Finally, the
. combination of expectations and visualization helps pro-
1 Introduction grammers explore and learn about unfamiliar systems.

Distributed systems exhibit more complex behavior
than applications running on a single node. For instancel.1 Context
a single logical operation may touch dozens of nodes Programmers employ a variety of techniques for de-
and send hundreds of messages. Distributed behavidugging distributed systems. Pip complements existing
is also more varied, because the placement and order @fpproaches, targeting different types of systems or differ
events can differ from one operation to the next. Bugsent types of bugs. Table 1 shows four approaches and the
in distributed systems are therefore hard to find, becausypes of systems or bugs for which they are most useful.
they may affect or depend on many nodes or specific se- Traditional debuggers and profilers like gdb and gprof
guences of behavior. are mature and powerful tools for low-level bugs. How-

In this paper, we present Pip, a system for auto-ever, gdb applies to only one node at a time and generally
matically checking the behavior of a distributed sys-requires execution to be paused for examination. Gprof
tem against a programmer’s expectations about the sygroduces results that can be aggregated offline but has
tem. Pip classifies system behaviors as valid or invalidno support for tracing large-scale operations through the
groups behaviors into sets that can be reasoned aboutetwork. Itis more useful for tuning small blocks of code
and presents overall behavior in several forms suited tdhan distributed algorithms and their emergent behavior.
discovering or verifying the correctness of system behav- More recent tools such as Project 5 [1], Magpie [2],
ior. and Pinpoint [5] infer causal paths based on traces of net-

In Proc. 3rd Symp. on Networked Systems Design and Implenoen(&dtSDI) San Jose, CA, May, 2006 2

Approach Scenario

gdb and gprof | low-level bugs well illustrated by a single node; core dumps

black boxes systems with no source-code access, enough self-congidtarstatistical inference
model checking| small systems with difficult-to-reproduce bugs

printf bugs detectable with simple, localized log analyses

Table 1:0ther techniques for debugging distributed systems.

work, application, or OS events. Project 5 merely re- guage design, along with design principles for han-

ports inferred behavior, while Magpie and Pinpoint clus- dling parallelism and for balancing over- and under-

ter similar behavior and suggest outliers as possible in- constraint of system behavior.

dicators of bugs. Pip also uses causal paths, but instead e A set of tools for gathering events, checking behav-

of relying on statistics and inference, Pip uses explicit ior, and visualizing valid and invalid behaviors.

path identifiers and programmer-written expectations to e Tools to generate expectations automatically from

gather and check program behavior. We discuss the re- system traces. These expectations are often more

lationship between Pip and other causal path debugging concise and readable than any other summary of

systems further in Section 6. system behavior, and bugs can be obvious just from
Programmers may find some bugs using model check- reading them.

ing [10, 16]. Model checking is exhaustive, covering all We applied Pip to several distributed systems, includ-
possible behaviors, while Pip and all the other techniqueshg FAB [25], SplitStream [4], Bullet [13, 15], and Ran-
mentioned above check only the behaviors exhibited insub [14]. Pip automatically generated most of the in-
actual runs of the system. However, model checking isstrumentation for all four applications. We wrote ex-
expensive and is practically limited to small systems anchectations to uncover unexpected behavior, starting in
short runs—often just tens of events. Model checking iseach case from automatically generated expectations.
often applied to specifications, leaving a system like Pippjp found unexpected behavior in each application and
to check the correctness of the implementation. Finallyhelped to isolate the causes of poor performance and in-
unlike model checking, Pip can check performance chargorrect behavior.
acteristics. The rest of this paper is organized as follows. Sec-
In practice, the dominant tool for debugging dis- tion 2 contains an overview of the Pip architecture and
tributed systems has remained unchanged for ovefool chain. Sections 3 and 4 describe in detail the design
twenty years: printf to log files. The programmer ana-and implementation of our expectation language and an-

lyzes the resulting log files manually or with application- notation system, respectively. Section 5 describes our
specific validators written in a scripting or string- results.

processing language. In our experience, incautious ad-

dition of logging statements generates too many event? Architecture

effectively burying the few events that indicate or explain Pip traces the behavior of a running application,

actual bugs. checks that behavior against programmer expectations,
Debugging with log files is feasible when bugs are ap-and displays the resulting valid and invalid behavior in a

parent from a small number of nearby events. If a singleGUI using several different visualizations.

invariant is violated, a log file may reveal the violation .

and a few events that preceded it. However, finding cor?-1 Beéhavior model o _

rectness or performance problems in a distributed system We define a model of application behavior for use

of any scale is incredibly labor intensive. In our own ex- With Pip. This model does not cover every possible ap-

perience, it can take days to track down seemingly simPlication, but we found it natural for the systems we an-

ple errors. Further, scripts to check log files are brittie@lyzéd. o o

because they do not separate the programmer’s expecta- The basic unit of application behavior in Pip is a path

tions from the code that checks them, and they must pinstance. Path instances are often causal and are often in

written anew for each system and for each property being€SPonse to an outside input such as a user request. A

checked. path instance includes events on one or more hosts and
can include events that occur in parallel. In a distributed

1.2 Contributions and results file system, a path instance might be a block read, a write,
Pip makes the following contributions: or a data migration. In a three-tier web service, path in-

e An expectations language for writing concise, stances might occur in response to user requests. Pip
declarative descriptions of the expected behaviomllows the programmer to define paths in whatever way
of large distributed systems. We present our lan-is appropriate for the system being debugged.

In Proc. 3rd Symp. on Networked Systems Design and Implenoen(&dtSDI) San Jose, CA, May, 2006 3

"Request = /cgi/..." "2096 bytes in response"

"done with reguest 12"

Parse HTTP Application Reconciliation
wwwlb——— 1 _ _ ___ | P
Appserver = = = = = = = e e e — —-— - -
Expectations Paths Database
Database= = = = = = = = =L— 2) & @ o o — - -

Checker+Explorer

Figure 1:A sample causal path from a three-tier system.

Unexpected behavior

Each path instance is an ordered series of times-
tamped events. The Pip model defines three types dfigure 2: Pip workflow. Shaded ovals represent input that
events: tasks, messages, and noticestagkis like a ~ must be at least partially written by the programmer.
profiled procedure call: an interval of processing with
a beginning and an end, and F“ef"‘sure"‘e”ts of FeSOUrCHR asurements as they run. Pip logs these events into
con_sumed. Tasks may nest inside other tasks but Otg;race files, one per kernel-level thread on each host. We
erwise may not overlap other tasks on the_ same threa ptimized the annotation library for efficiency and low
Tasks may mclgde asynchronou; eventg like timer C‘?‘”'memory overhead: it performs no analysis while the ap-
backs, which Pip normally associates with the path in-

h heduled them.nfe : plication is running.
slanoes Ta Scheculed Inerimesag® any commu- We found that the required annotations are easiest to

nication event between hosts or threads, whether a neE{dd when communication, event handling, and logging

work message, a lock, or a_t|mer. Pip records MESSageY e handled by specialized components or by a supported
when they are sent and again \{vhent.hey are received. I:f‘hiddleware library. Such concentration is common in
nglly, a_not|ce|s an opaque s.tnngﬁhke a log r'nessage'Iarge—scale distributed systems. For applications linked
W'th.a timestamp and a path |dent|-f|er for context. against a supported middleware library, a modified ver-
Flgure 1.Sh9WS. a sample path ms_,tan_ce. Each da_sh on of the library can generate automatic annotations
horizontal line indicates one host, with time proceeding; every network message, remote procedure call, and

to the right. The boxes are tasks, which run on a singlg,eyori_event handler. Programmers can add more an-

host from a start time to an end time. The diagonal ar otations to anything not annotated automatically.

lrogvsl are messages seknt from one hosrt]_tc;] another. The A separate program gathers traces from each host and
abels In quotation marks are notices, which occur at ong - iles them. Reconciliation includes pairing mes-

instant on a host. sage send and receive events, pairing task start and end

Pip assoglates each record_ed event with a thread. AQvents, and performing a few sanity checks. Reconcili-
event-handling system that dispaiches related events Bion writes events to a database as a series of path in-

seyeral different threads will b_e treated as haymg ON&tances. Normally, reconciliation is run offline, parsing
logical thread. Thus, two path instances that differ onlyIog files from a short test run. However, Pip may also

on WhiCh threads they are dispatched will appear to haV'f")e run in an online mode, adding paths to the database
identical behavior. nd checking them as soon as they complete. Section 4

.Our ch0|cg of tasks, messages, and_notllces IS We@escribes annotations and reconciliation in more detail.
suited to a wide range of distributed applications. Tasks
correspond to subroutines that do significant processgypectations: Programmers write an external descrip-
ing. In an event-based system, tasks can correspond {g,n of expected program behavior. The expectations
event-handling routines. Messages correspond 10 Nefyye two forms: recognizers which validate or invali-
work communication, locks, and timers. Notices captureyie individual path instances, aaggregateswhich as-
many other types of decisions or events an applicationer; properties of sets of path instances. Pip can generate
might wish to record. initial recognizers automatically, based on recorded pro-
2.2 Tool chain gram behavior. These g_en_erated recognizers serve as a
concise, readable description of actual program behav-

Pip is a suite of programs that work together to gather,

check, and display the behavior of distributed systems'.or‘ Section 3 describes expe.ctatlo.ns in more detai.
Formally, a set of recognizers in Pip is a grammar,

Figure 2 shows the workflow for a programmer using , . = ; .) .

Pip. Each step is described in more detail below. defining Va"‘?‘ and invalid sequences of events. In |t_s ceur-
rent form, Pip allows users to define non-deterministic

Annotated applications: Programs linked against finite-state machines to check a regular grammar. We

Pip’s annotation library generate events and resourcehose to define a domain-specific language for defining

In Proc. 3rd Symp. on Networked Systems Design and Implenoen(&dtSDI) San Jose, CA, May, 2006 4

these grammars because our language more closely mir- der of events might vary from one path instance to
rors how programmers reason about behavior in their ap- the next.

plications. We believe this choice simplifies writing and 2. Expectations written in the language must reject
maintaining expectations. as many invalid paths as possible. The language
should allow the programmer to be as specific as
possible about task placement, event order, and
communication patterns, so that any deviations can
be categorized as unexpected behavior.

Expectation checker: If the programmer provides any

expectations, Pip checks all traced behavior against
them. These checks can be done non-interactively, to
generate a list of violations, or they can be incorpo- :)
rated into the behavior explorer (below). Section 3.5 de- 3+ 1€ language should make simple expectations easy

scribes the implementation and performance of expecta- [0 8XPress.
tion checking. We designed Pip with several real systems in mind:
The expectation violations that Pip uncovers do notP€er-to-peer systems, multicast protocols, distributed fi
always indicate bugs in the system being tested. Somesystems, and three-tier web servers, among others. Pip
times, the errors are in the expectations or in the annoalso draws inspiration from two platforms for building
tations. Using Pip entails changing the application, thedistributed systems: Ma2¢12] and SEDA [27]. The re-
expectations, and the annotations until no further unexsult is that Pip supports thread-oriented systems, event-
pected behavior is found. Unexpected paths due to inbandling systems, and hybrids. We gave special consid-
correct expectations or annotations can loosely be calle@ration to event-handling systems that dispatch events to

false positivesthough they are not due to any incorrect multiple threads in a pool, i.e., for multiprocessors or to
inference by Pip. allow blocking code in event handlers.

Behavior explorer: Pip provides an interactive GUI 3.2 Approaches to parallelism

environment that displays causal structure, communica- The key difficulty in designing an expectations lan-
tion structure, sets of validated and invalidated pathd, anguage is expressing parallelism. Parallelism in dis-
resource graphs for tasks or paths. Even without writtributed systems originates from three main sources:
ing any expectations, programmers can visualize modiosts, threads, and event handlers. Processing happensin
aspects of application behavior. Pip stores all of its pathgarallel on different hosts or on different threads within

in an SQL database so that users can explore and chedke same host, either with or without synchronization.
application behavior in ways that Pip may not support di-Event-based systems may exhibit additional parallelism
rectly. Space constraints prevent us from describing théf events arrive in an unknown order.

GUI or the database schema further here. Pip first reduces the parallelism apparent in an appli-
cation by dividing behavior into paths. Although a path
3 Expectations may or may not have internal parallelism, a person writ-

Both checking and visualization in Pip start with ex- ing Pip expectations is shielded from the complexity of
pectations. Using Pip's declarative expectations lanmatching complex interleavings of many paths at once.
guage, programmers can describe their intentions about Pip organizes the parallelism within a path into

a system’s structure, timing, and resource consumptionthreads. ~The threads primitive applies whether two
threads are on the same host or on different hosts. Pip’s

3.1 Design considerations expectation language exposes threading by allowing pro-
Our goal is to provide a declarative, domain-specificgrammers to writehread patternswhich recognize the
expectations language that is more expressive thabehavior of one or more threads in the same path in-

general-purpose languages, resulting in expectations thagtance.

are easier to write and maintain. Programmers using Pip Even within a thread, application behavior can be
should be able to find more complex bugs with less efnondeterministic. Applications with multiple sources of
fort than programmers checking behavior with scripts orevents (e.g., timers or network sockets) might not always

programs written in general-purpose languages. process events in the same order. Thus, Pip allows pro-
With expressiveness in mind, we present three goalgrammers to writéutures which are sequences of events
for any expectations language: that happen at any time after their declaration.

1. Expectations written in the language must acceptall One early design for Pip's expectation language
valid paths. One recognizer should be able to acceptreated all events on all hosts as a single, logical thread.
a whole family of paths—e.g., all read operations in There were no thread patterns to match parallel behav-
a distributed file system or all CGl page loads in ior. This paradigm worked well for distributed hash ta-
a webserver—even if they vary slightly. In some bles (DHTs) and three-tier systems, in which paths are
systems, particularly event-driven systems, the ordargely linear, with processing across threads or hosts se-

In Proc. 3rd Symp. on Networked Systems Design and Implenoen(&dtSDI) San Jose, CA, May, 2006 5

/I Read30thers is a validatingecognizer validator fab_109{
validator Read30Otherg thread t_7(*, 1) {
/I no voluntary context switches: never block sendt-9); recv(t.9); }
limit (VOL_CS, 0); thread t-9(*, 1) {
/I one Client, issues a read request to Coordinator recv(t_7);
thread Client(*, 1) { task(“fabrpc::Read”){
sendCoordinator)limit (SIZE, {=44b}); // exactly 44 bytes sendt_1);
recv(Coordinator);} sendt_1);
/I one Coordinator, requests blocks from three Peers sendt_1);
thread Coordinator(*, 1){ recv(t_1);
recv(Client) limit (SIZE, {=44b}); task(“quorumrpc::ReadReply™);
task(“fabrpc::Read”){ recv(t_1);
repeat3 { sendPeer);} task(“quorumrpc::ReadReply”)}
repeat2 { sendt_7);
recv(Peer); recv(t_1);
task(“quorumrpc::ReadReply”)} task(“quorumrpc::ReadReply”)}
future { // these statements match events now or later thread t-1(*, 3) {
recv(Peer); recv(t_9);
task(“quorumrpc::ReadReply”)} } task(“quorumrpc::ReadReq"] sendt.9); } } }
sendClient); }
Il exactly three Peers, respond to Coordinator Figure 4: Automatically generated expectation for the FAB
thread Peer(*, 3){ read protocol, from which we derived the expectation in Fig-
recv(Coordinator); ure 3.

task(“quorumrpc::ReadReq"] sendCoordinator);} } }
/I “ assert” indicates an aggregate expectation

asser(averaggREAL-TIME, Read30thersy 30ms); the client. The final read reply may happen before or

Figure 3:FAB read protocol, expressed as an expectation. after the coordinator sends the newly read block to the
client. Figure 4 shows a recognizer generated automat-

alized. It ked v, h ¢ lticast ically from a trace of FAB, from which we derived the
rialized. It worked poorly, however, for multicast pro- recognizer in Figure 3.

tocols, distributed file systems, and other systems where recognizer in Figure 3 matches only a 2-of-3 quo-

a single path might be active on two hosts or threads "’\Ium, even though FAB can handle other degrees of repli-

thhe _san:e time. We tneﬁislapl I kﬁ)":votrﬁ to 3”0\’\’ E}e't cation. Recognizers for other quorum sizes differ only by
avior to occur in paratiel on muttiple threéads or NOstS, ., qantg, Similarly, recognizers for other systems might

but it was awkward and could not describe systems W'trbepend on deployment-specific parameters, such as the

varying degrees of parallelism. The current design, USi.ng'lumber of hosts, network latencies, or the desired depth
thread patterns and futures, can naturally express a W'd%rf a multicast tree. In all cases, recognizers for different

variety of distributed systems. sizes or speeds vary only by one or a few constants. Pip
3.3 Expectation language description could be extended to allow parameterized recognizers,

Pip defines two types of expectationscognizersand which would gimplify_the maintenance of expectations
aggregates A recognizer is a description of structural for systems with multiple, different deployments.
and performance behavior. Each recognizer classifies a Pip currently provides no easy way to constrain simi-
given path instance as matching, matching with perforJar behavior. For example, if two loops must execute the
mance violations, or non-matching. Aggregates are asS@me number of times or if communication must go to
sertions about properties of sets of path instances. Fgtnd from the same host, Pip provides no means to say so.
example, an aggregate might state that a specific numb&ariables would allow an expectations writer to define
of path instances must match a given recognizer, or tha@ne ;ection (_)f behavior in terms of a previously observed
the average or 95th percentile CPU time consumed by &ection. Vgnables are also a naturall way to implement
set of path instances must be below some threshold. ~ Parameterized recognizers, as described above.

Figure 3 shows a recognizer and an aggregate expec- The following sections desc_ribe the syntax of recog-
tation describing common read events in FAB [25], a dis-Nizers and aggregate expectations.
tributed block-storage system. Thé m t statements _
are optional and are often omitted in real recognizers3-3-1 Recognizers
They are included here for illustration. Each recognizer can bevalidator, aninvalidator, or a

FAB read events have five threads: one client, onébuilding block for other expectations. A path instance is
I/O coordinator, and three peers storing replicas of theconsidered valid behavior if it matches at least one val-
requested block. Because FAB reads follow a quorumdator and no invalidators. Ideally, the validators in an
protocol, the coordinator sends three read requests batxpectations file descrikal expected behavior in a sys-
only needs two replies before it can return the block totem, so any unmatched path instances imply invalid be-

In Proc. 3rd Symp. on Networked Systems Design and Implenoen(&dtSDI) San Jose, CA, May, 2006 6

havior. Invalidators may be used to indicate exceptions Send andr ecv statements match the endpoints of

to validators, or as a simple way to check for specifica single message event. Both statements take an iden-

bugs that the programmer knows about in advance. tifier indicating which thread pattern or which node the
Each recognizer can match either complete path inmessage is going to or arriving from.

stances or fragments. omplete recognizemust de- \ariant statements: Variant expectation components
scribe f”‘” behavior in a path |n.stance, whlléragment. specify a fragment that can match zero or more actual
recognizercan match any _cont|guous part of a path in- o entg jn o path instance. The five types of variant state-
stance. Fragment recognizers are often, but not always, ants are epeat , maybe, xor , any, andi ncl ude.
invalidators, recognizing short sequences of events that , repeat statement indicates that a given block of
invalidate an entire path. The validator/invalidator andcode will be repeated times, forn in a given range. The

complete/fragment designations are orthogonal. maybe statement is a shortcut forepeat bet ween
A recognizer matches path instances much the samg 5.4 1. The syntax of epeat andmaybe is:

way a regular expression matches character strings. A
complete recognizer is similar to a regular expression
that is constrained to match entire strings. Pip’s rec-
ognizers define regular languages, and the expectation An xor statement indicates that exactly one of the

repeat betweerlow and high { statements
maybe { statement$

checker approximates a finite state machine. stated branches will occur. The syntaxxafr is:
Each recognizer in Pip consists of expectation state- xor {

ments. Each statement can be a literal, matching exactly branch: statements

one event in a path instance; a variant, matching zero or branch: statements

more events in a path instance; a future, matching a block ... (any number of branch statements)

of events now or later; or a limit, constraining resource 1

consumption. What follows is a description of the expec-

tation statements used in Pip. Most of these statements, An any statement matches £€ro or more path (:::\i?nts
. i Of any type. Anany statement is equivalent to “.
are illustrated in Figure 3.

in a regular expression, allowing an expectation writer

Thread patterns: Path instances in Pip consist of one t0 avoid explicitly matching a sequence of uninteresting

or more threads or thread pools, depending on systerfVents.

organization. There must be at least one thread per host Ani ncl ude statementincludes a fragment expecta-

participating in the path. All complete (not fragment) tion inline as a macro expansion. Thacl ude state-

recognizers consist of thread patterns, each of whictnentimproves readability and reduces the need to copy

matches threads. A whole path instance matches a re@nd paste code.

ognizer if each thread matches a thread pattern. Pip'sutures: Some systems, particularly event-handling

syntax for a thread pattern is: systems, can allow the order and number of events to
thread(where coun) {statements vary from one path instance to the next. Pip accommo-

dates this fact usinfut ur e statements and optional

Whereis a hostname, or “*” to match any hosountis done statements. The syntax féut ur e anddone

the number of threads allowed to match, or an allowablestatements is:

range.Statements a block of expectation statements. future [namg {statements

Literal statements: Literal expectation statements done(name;
correspond exactly to the types of path events described A f ut ur e statement indicates that the associated
in Section 2. The four types of literal expectation state-block of statements will match contiguously and in order
ments are ask, noti ce,send, andr ecv. at or after the current point in the path instance. Loosely,
A t ask statement matches a single task event and future states that something will happen either now or
any nested events in a path instance. The syntaxis: later. Futures may be nested: when one future encloses
another, it means that the outer one must match before
the inner one. Futures may also be nested in (or may in-
Nameis a string or regular expression to match the taskclude) variant statements. Futures are useful for impos-
event's name. The optionatatementdlock contains ing partial ordering of events, including asynchronous
zero or more statements to match recursively against thevents. Specifying several futures in a row indicates a
task event’s subtasks, notices, and messages. set of events that may finish in any order. The recognizer
A not i ce statement matches a single notice eventin Figure 3 uses futures to recognize a 2-of-3 quorum
Not i ce statements take a string or regular expressionn FAB: two peers must respond immediately, while the
to match against the text of the notice event. third may reply at any later time.

task(namg {statements

In Proc. 3rd Symp. on Networked Systems Design and Implenoen(&dtSDI) San Jose, CA, May, 2006 7

A done statement indicates that events described byeach request, asynchronous behavior is rare, and pro-
a given future statement (identified by its name) mustgrammers will rarely, if ever, need to use futures. For
match prior to the point of thdone statement. All fu- event-based components, locks and communication or-
tures must match by the end of the path instance, witlder may impose constraints on event order, but there
or without adone statement, or else the recognizer doesmay be ambiguity. To deal with ambiguity, programmers
not match the path instance. should describe asynchronous tasks as futures. In partic-

Limits: Programmers can express upper and |0we'ular, periodic background events (e.g., a timer callback)

limits on the resources that any task, message, or path®/ require a future statement inside a repeat block, to

can consume. Pip defines several metrics, including reaﬁ”ow many occurrences (perhaps an unknown number)

time, CPU time, number of context switches, and mes-at unknown times.

sage size and latency (the only metrics that apply to mesz g Implementation
sages). A limit on the CPU time of a path is evaluated g pip trace checker operates as a nested loop: for

against the sum of the CPU times of all the tasks on thab, oy path instance in the trace, check it against each rec-
path. A limit on the real time of a path is evaluated basedognizer in the supplied expectations file.

on the time between the first and last events on the path. Pip stores each recognizer as a list of thread patterns.

Recognizer sets: One recognizer may be defined in Each thread pattern is a tree, with structure correspond-
terms of other recognizers. For example, recognizeing to the nested blocks in the expectations file. Figure 5
C may be defined as matching any path instance thashows a sample expectation and one matching path. This
matchesA and does not matcB, or the set difference example demonstrates why a greedy matching algorithm
A— B. is insufficient to check expectations: the greedy algo-
rithm would match Notice C too early and incorrectly

3.3.2 Aggregates return a match failure. Any correct matching algorithm

Recognizers organize path instances into sets. Aggrénust be able to check all possible sets of events that vari-
gate expectations allow programmers to reason about thents such asaybe andr epeat can match.
properties of those sets. Pip defines functions that return Pip represents each path instance as a list of threads.

properties of sets, including: Each thread is a tree, with structure corresponding to
e i nstances returns the number of instances the hierarchy of tasks and subtasks. When checking a
matched by a given recognizer. recognizer against a given path instance, Pip tries each

e N n, max, avg, andst ddev return the minimum, thread in the path instance against each thread pattern in
maximum, average, and standard deviation of thethe recognizer. The recognizer matches the path instance
path instances’ consumption of any resource. if each path thread matches at least one thread pattern

Aggregate expectations are assertions defined in term@nd each thread pattern matches an appropriate number
of these functions. Pip supports common arithmetic andf path threads.

comparative operators, as well as simple functions like Each type of expectation statement has a correspond-
logarithms and exponents. For example: ing check function that matches path instance events.

asser(averaggCPU TIME, ReadOperationy 0.5s): Each chec_k function returns_ each possible number
of events it could match. Literal statementsagk,

This statement is true if the average CPU time consumedot i ce, send, andr ecv) match a single event, while
by a path instance matching the ReadOperation recograriant statements gpeat , xor , andany) can match
nizer is less than 0.5 seconds. different numbers of events. For example, if two dif-
- . ferent branches of aror statement could match, con-
3.4 Avoiding over- and under-constraint . ith h K h
A id both over- and unOIer_summg either two or three eventsheck returns the
Expectations in Pip must avol set[2, 3]. If a literal statement matches the current path

constraint. An over-constrained recognizer may be to%vent,check returns[l], otherwisell. When acheck

strict and reject valid paths, while an under—constralne unction for a variant statement returitd, it can be sat-

sfied by matching zero events. A failure is indicated by
statements—repeats, xor, and futures—to allow the prog, empty set)
grammer to choose how specific to be in expressing ex- g possible-match sets returned by each expectation
pectations. Programmers should_ express how the SySte@atement form a search tree, with height equal to the
should behave rather than how it does behave, drawing, \per of expectation statements and width dependent
upper and lower b‘?“”ds and ordering constraints fro”bn how many variant statements are present in the ex-
actual program design. pectation. Pip uses a depth-first search to explore this

Executlon_ order is particularly prone to under- and search tree, looking for a leaf node that reaches the end
over-constraint. For components that devote a thread to

In Proc. 3rd Symp. on Networked Systems Design and Implenoen(&dtSDI) San Jose, CA, May, 2006 8

task(“A") { <task name="A"> future F1{ notice(“C"); } <task name="A">
maybe { notice("B”); } <noticename="B” /> task(“A") { <noticename="B" />
repeat betweenl and 2 { <noticename="C” /> maybe { notice("B”); } <noticename=“C” />
notice(/.*/); } </task> repeat betweenland2 { </task>
notice(“C"); } notice(/.*/); } }

Figure 5: A sample fragment recognizer and a path thatFigure 7:The same path as in Figure 5, with a slightly modi-
matches it. fied recognizer to match it. Note thatthet i ce(" C") state-

ment has been moved into a future block.
ﬁReturn value: (T)rue or (F)alse

T I Repeat [€«—Expectation statement Return value:
1 I 2 |€&—Match sizes: path events matched I (True or (Palse
T[Repeat [€—Expectation statement T[Future
= I ” 1.[Fl]lz.[F1]<—Matches and futures: 0,[F1]
Tas path events matched /
. trep
1 and pending futures T l Task 3 lNotice T
¢ Normal check Future check TIF1] NULL
T I Maybe | e e a
T l Maybe F l Notice C
of 1 0.[F1][1.[F1] NULL
/ \
T I Repeat F I Repeat T] Repeat F]Notice C F l Repeat F lNotice C
1 I 2 1 LIF1][2,[F1] NULL 1,[F1] 1,[]
T | Notice C F | Notice C F I Notice C T] Notice C F lNotice C F lNotice C F] Repeat
1 NULL NULL 1,[] NULL NULL NULL

Figure 8:The search tree formed when matching the expecta-

Figure 6:The search tree formed when matching the expecta-, o
tion and the path events in Figure 7.

tion and the path events in Figure 5.

the table as well as the next expectation statement. If a
of the expectation tree and the path tree at the same tim@uture matches, then that branch of the tree uses a new
That is, the match succeeds if, in any branch of the searcfutures table with that one future removed. A leaf of the
tree, the expectation matches all of the path events. tree matches only if each expectation statement returns

Figure 6 shows the possibilities searched when matchsuccess, all path events are consumed, and the futures
ing the expectations and the path events in Figure 5. Eaclable is empty.

node representsaheck function call. Each node shows Figure 7 shows the same path instance as in Fig-
the return value (true or false) of the recursive search callure 5, with a different expectation to match it: the
the expectation statement being matched, and the nunimot i ce(" C') statement is now a future. Figure 8
ber(s) of events it can match. Leaves with no possibleshows the possibilities searched when matching the ex-
matches are shown with a possible-match seflldfL. pectations and the path events in Figure 7. Lazy evalu-
and a return value of false. A leaf with one or more pos-ation again means that only a few nodes of the tree de-
sible matches might still return false, if any path eventspicted in Figure 8 are actually expanded.
were left unmatched.

3.5.2 Performance

3.5.1 Futures The time to load and check a path instance depends, of
Pip checks futures within the same framework. Eachcourse, on the complexity of the path instance and the
check function takes an additional parameter contain-complexity of the recognizers Pip checks it against. On
ing a table of all currently available futures. Possible-a 1.6 GHz laptop running Linux 2.6.13 and MySQL 4.1,
match sets contairevents matched, futures tabléu- a complex path instance containing 100 hosts and 1700
ples rather than just numbers of events that could bevents takes about 12 ms to load and another 12 ms to
matched. Most heck calls do not affect the table of ac- check against seven recognizers, two of which contain
tive futures, simply returning the same value passed as futures. Thus, Pip can load and check about 40 complex
parameterfFut ur e. check inserts a new entry into the path instances, or as many as 3400 simple path instances,
futures table but does not attempt to match any events; pper second on this hardware.
returns a single tuplex0 events, updated futures table
Done. check forces the named future to match imme- 4 Annotations
diately and removes it from the futures table. Pip represents behavior as a list of path instances that
Each node in the search tree must try all futures incontain tasks, notices, and messages, as described in Sec-

In Proc. 3rd Symp. on Networked Systems Design and Implenoen(&dtSDI) San Jose, CA, May, 2006 9

tion 2. These events are generated by source-code apath-id annotations before beginning a task or delivering
notations. We chose annotations over other event and message. Only notices, which are optional and are the
tracing approaches for two reasons. First, it was expesimplest of the six annotations, are left to the program-
dient. Our focus is expectations and how to generatemer. The programmer may choose to add further mes-
check, and visualize them automatically. Second, mossage, task, and path annotations beyond what our modi-
other sources of events do not provide a path ID, makindied Mace generates.
them less detailed and less accurate than annotations. Pip Other middleware layers that handle event handling
could easily be extended to incorporate any event sourcand network communication could automate annotations
that provides path IDs. similarly. For example, we believe that SEDA [27] and
Pip provides a library, libannotate, that programmersRPC platforms like CORBA could generate message and
link into their applications. Programmers insert a modestask events and could propagate path IDs. Pinpoint [5]
number of source code annotations indicating which patlshows that J2EE can generate network and task events.
is being handled at any given time, the beginning and en -
of interesting tasks, the transmission and receipt of mesq-l'l Reconciliation
sages, and any logging events relevant to path structuret.

The six main annotation calls are: . . ; :

o _ _ terminates, the Pipeconcilergathers the files to a cen-

* annotate setpath.id(id): Indicate which path all 5 |5cation and loads them into a single database. The
subsequent events belong to. An application mustecqnciler must pair start- and end-task events to make
set a path identifier before recording any other,,iieq task events, and it must pair message-send and
events. Path identifiers must be unique across allyeqqage-receive events to make unified message events.
hosts and all time. Often, identifiers consist of the The reconciler detects two types of errors. First, it
host address where the path began, plus a local S¢getects incomplete (i.e., unpaired) tasks and messages.
guence number. i Second, it detects reused message IDs. Both types of

* gnnotatestart_task(name: Begin SOME ProCess- errors can stem from annotation mistakes or from appli-
ing task, event handler, or subroutine. Annotationg4iion hugs. In our experience, these errors usually indi-
overhead for a task is around 16, and the gran- - .4te an annotation mistake, and they disappear entirely if
ularity for most resource measurements is a sched; . tations are added automatically.

uler time slice. Thus, annotations are most useful

for tasks that run for the length of a time slice or 5§ Results

The Pip annotation library records events in local
race files as the application runs. After the application

longer. _ We applied Pip to several distributed systems, includ-
e annotate end task(namg: End the given process- ing FAB [25], SplitStream [4], Bullet [13, 15], and Ran-
ing task. Sub [14]. We found 18 bugs and fixed most of them.

e annotatesend(id, siz§: Send a message with the Some of the bugs we found affected correctness—for
given identifier and size. Identifiers must be uniqueexamme, some bugs would result in SplitStream nodes
across all hosts and all time. Often, identifiers con-pot receiving data. Other bugs were pure performance
sist of the address of the sender, an indication ofimprovements—we found places to improve read latency
the type of message, and a local sequence numbeh FAB by 15% to 50%. Finally, we found correctness
Send events do not indicate the recipient addressgrrors in SplitStream and RanSub that were masked at
allowing logical messages, anycast messages, fokhe expense of performance. That is, mechanisms in-
warding, etc. tended to recover from node failures were instead recov-

e annotatereceive(id, siz9: Receive a message with ering from avoidable programming errors. Using Pip, we
the given identifier and size. The identifier must discovered the underlying errors and eliminated the un-
be the same as when the message was sent, usuafiécessary time the protocols were spending in recovery
meaning that at least the sequence number must hgyde.
sentin the message. The bugs we found with Pip share two important char-

e annotate.notice(string): Record a log message. gacteristics. First, they occurred in actual executions of

Programs developed using a supported middlewarénhe systems under test. Pip can only check paths that are

layer may require only a few annotations. For exam-used in a given execution. Thus, path coverage is an im-
ple, we modified Mace [12], a high-level language for portant, though orthogonal, consideration. Second, the
building distributed systems, to insert five of the six typesbugs manifested themselves through traced events. Pro-
of annotations automatically. Our modified mace addsgram annotations must be comprehensive enough and ex-
begin- and end-task annotations for each transition (i.e pectations must be specific enough to isolate unexpected
event handler), message-send and message-receive anbehavior. However, the bugs we found were not limited
tations for each network message and each timer, and sab bugs we knew about. That is, most of the bugs we

In Proc. 3rd Symp. on Networked Systems Design and Implenoen(&dtSDI) San Jose, CA, May, 2006 10

Lines Recognizers| Lines of Number | Number | Trace Reconciliation| Checking | Bugs | Bugs
System of code | (lines) annotations| of hosts | of events | duration| time (sec) time (sec) | found | fixed
FAB 124,025 17 (590) 28 4 88,054 4 sec 6 7 2 1
SplitStream 2,436 19 (983) 8 100 | 3,952,592| 104 sec 1184 837 13 12
Bullet 2,447 1(38) 23 100 863,197 71 sec 140 81 2 0
RanSub 1,699 7 (283) 32 100 312,994 | 602 sec 47 9 2 1

Table 2:System sizes, the effort required to check them, and the euoftbugs found and fixed.

found were not visible when just running the applications o 2

or casually examining their log files. L o6
Table 2 shows the size of each system we tested, alon§ 0:4

Coordinator 1st:

with how much programmer effort and CPU time it took 0.2 | s Coordinator 2nd--—--

to apply Pip in each case. Bullet has fewer expectations o . Coordinator 3rd- - - - -
because we did not write validators for all types of Bullet 1 10 100 1000 10000
paths. SplitStream has many expectations because it is End-to-end delay (ms)

inherently complex and because in some cases we wrotgigure 9:CDF of end-to-end latency in milliseconds for FAB
both a validator and an overly general recognizer for theead operations. The left-most line shows the case where the
same class of behavior (see Section 5.2). Over 90% ofoordinator calls itself last. Note that the x axis is logdsd to
the running time of reconciliation and checking is spentshow detail.
in MySQL queries; a more lightweight solution for stor- 1
ing paths could yield dramatic speed improvements. In 0.8
addition to the manual annotations indicated in the table,. g1} :
we added 55 annotation calls to the Mace compiler and 04 Coordinator 1st
library and 19 to the FAB IDL compiler. 02ff/ Coordinator 2nd--—
S . . i oordinator 3rd
Reconciliation time iSO(E 1g p) for E events ang 0" : ‘
path instances, as each event is stored in a database, in- 10 100
dexed by path ID. The number of high-level recognizer End-to-end delay (ms)
Checking operations is exacﬂv forp path instances and Figure 10:CDF of end-to-end latency in milliseconds for FAB
r recognizers. Neither stage’s running time is dependenf€ad operations in a system with a high cache hit rate. The
on the number of hosts or on the concurrency betwee'hpft-most line shows the cqsg where the coordinator cal;ldﬂﬂt
paths. The checking time for a path instance against gecond. Note that the x axis is log-scaled to show detail.
recognizer is worst-case exponential in the length of the
recognizer, e.g., when a recognizer with pathologically We were not initially familiar with FAB, but we had
nested future and variant statements almost matches access to its source code, and one of its authors offered to
given path instance. In practice, we did not encountehelp us understand it. With just a few hours of effort, we
any recognizers that took more than linear time to checkannotated FAB’s IDL compiler, and were able to get the
In the remainder of this section, we will describe our tasks and messages necessary to examine every protocol.
experiences with each system, some sample bugs we Figure 3 in Section 3.3 showed an expectation for the
found, and lessons we learned. FAB read protocol when the node coordinating the ac-
cess (the 1/0O coordinator) does not contain a replica of
51 FAB the block requested. In this section, we focus on the case
) A Federated Array of Bricks (F_AB) [25] is a d's_' where the coordinator does contain a replica. In addition
tr_|buted block storag_e system bu'lt_ from CommO(_1|ty to the read and write protocols, we annotated and wrote
Linux PCs. FAB replicates data using simple repl'ca'expectations for FAB's implementation of Paxos [17]

tion or erasure coding and uses majority voting protocolsdnd the Cristian-Schmuck membership protocol [6] but
to protect against node failures and network partitionsdid not find any bugs in either

FAB contains about 125,000 lines of C++ code and a few

thousand lines of Python. All of FAB’s network code is Bugs: When the FAB /O coordinator contains a
automatically generated from IDL descriptions written replica of the block requested, the order of RPCs issued
in Python. The C++ portions of FAB combine user-level affects performance. In FAB, an RPC issued by a node
threading and event-handling techniques. A typical FABto itself is handled synchronously. Originally, FAB is-
configuration includes four or more hosts, backgroundsued read or write RPCs to all replicas in an arbitrary
membership and consensus communication, and a miarder. A recent optimization changed this code so that
of concurrent read and write requests from one or more¢he coordinator always issues the RPC to itself (if any)
clients. last, allowing greater overlap of computation.

In Proc. 3rd Symp. on Networked Systems Design and Implenoen(&dtSDI) San Jose, CA, May, 2006 11

FAB’s author sent us the unoptimized code withoutstanding of the SplitStream protocol, and the other nine
describing the optimization to us, with the intention thatwere implementation errors. At least four of the bugs re-
we use Pip to rediscover the same optimization. Figure $ulted in inefficient (rather than incorrect) behavior. In
shows the performance of read operations when the coothese cases, Pip enabled performance improvements by
dinator calls itself first, second, or last. When the blockuncovering bugs that might have gone undetected in a
is not in cache (all delay values about 10 ms), havingsimple check of correctness.
the coordinator issue an RPC to itself last is up to twice One bug in SplitStream occurred twice, with simi-
as fast as either other order. Write performance shows kar symptoms but two different causes. SplitStream al-
similar, though less pronounced, difference. lows each node to have up to 18 children, but in some

We discovered this optimization using expectationscases was accepting as many as 25. We first discovered
and the visualization GUI together. We wrote recogniz-this bug using the GUI: visualizations of multicast paths’
ers for the cases where the coordinator called itself firstcausal structure sometimes showed nodes with too many
second, and third and then graphed several properties children. The cause the first time was the use of global
the three path sets against each other. The graph for endnd local variables with the same name; SplitStream was
to-end delay showed a significant discrepancy betweepassing the wrong variable to a call intended to offload
the coordinator-last case and the other two cases. excess children. After fixing this bug, we wrote a valida-

Figure 10 shows the same measurements as Figure fyr to check the number of children, and it soon caught
in a system with a higher cache hit rate. We noticed thatnore violations. The second cause was an unregistered
letting the coordinator call itself second resulted in a 15%callback. SplitStream contains a function to accept or
decrease in latency for reads of cached data by perfornreject new children, but the function was never called.

ing the usually unngeded third call after achlieving aZ'Of'Lessons: Some bugs that look like structural bugs af-
3 quorum and sending a response to the client. The FAB.. o1y performance, not correctness. For example,
authors were not aware of this difference. when a SplitStream node has too many children, the tree
Lessons: Bugs are best noticed by someone whostill delivers data, but at lower speeds. The line between
knows the system under test. We wrote expectations fostructural bugs and performance bugs is not always clear.
FAB that classified read and write operations as valid re- The expectations checker can help find bugs in sev-
gardless of the order of computation. We found it easyeral ways. First, if we have an expectation we know to be
to write recognizers for the actual behavior a system exeorrect, the checker can flag paths that contain incorrect
hibits, or even to generate them automatically, but onlybehavior. Second, we can generate recognizers automati-
someone familiar with the system can say whether sucleally to match existing paths. In this case, the recognizer
recognizers constitute real expectations. is an external description of actual behavior rather than
52 SplitStream expected behavior. The recognizer is often more concise

:])) and readable than any other summary of system behavior,
SplitStream [4] is a high-bandwidth content- 54 pgs can be obvious just from reading it. Finally, we
streaming system built upon the Scribe multicastoyn \yrite an overly general recognizer that matches all
protocol [24] and the Pastry DHT [23]. = SplitStream p iticast paths and a stricter, validating recognizer that
sends content in parallel over a “forest” of 16 Scribe 5¢ches only correct multicast paths. Then we can study
trees. At any given time, SplitStream can accommodatg, o rect multicast paths—those matched by the first but

nodes joining or leaving, plus 16 concurrent multicastyyqt the second—uwithout attempting to write validators
trees. We chose to study SplitStream because it is g, other types of paths in the system.

complex protocol, we have an implementation in Mace,

and our implementation was exhibiting both perfor-5.3 Bullet

mance problems and structural bugs. Our SplitStream Bullet [13, 15] is a third-generation content-

tests included 100 hosts running under ModelNet [26]distribution mesh. Unlike overlay multicast protocols,
for between two and five minutes. Bullet forms a mesh by letting each downloading node

Bugs: We found 13 bugs in SplitStream and fixed most choose several peers, which it will send data to and re-
of them. Space does not allow descriptions of all 13ceive data from. Peers send each other lists of which

bugs. We found two of the bugs using the GUI and 11 oftlocks they have_already received. One qode can decide
the bugs by either using or writing expectations. Severf® S€nd (push)alist of available blocks to its peers, or the
bugs had gone unnoticed or uncorrected for ten monthsecond can r_equest (pull) the list. I__|sts are transmitted as
or more, while the other six had been introduced recenthf€ltas containing only changes since the last transmis-
along with new features or as a side effect of portingSIon Petween the given pair of nodes.

SplitStream from MACEDON to Mace. Four of the bugs Bugs: We found two bugs in Bullet, both of which are
we found were due to an incorrect or incomplete underinefficiencies rather than correctness problems. First, a

In Proc. 3rd Symp. on Networked Systems Design and Implenoen(&dtSDI) San Jose, CA, May, 2006 12

given nodeA sometimes notifies nod8 of an avail-

able block N several times. These extra notifications

are unexpected behavior. We found these extra notifi-

cations using the reconciler rather than the expectation

checker. We set each message ID<agender, recipi- ! ‘ ‘ ‘ ‘ ‘ .

ent, block numbes instead of using sequence numbers. 0 100 200 300 400 500 600

Thus, whenever a block notification is re-sent, the recon- Task start time (s)

ciler generates a “reused message ID” error. Figure 11:Duration for thedel i ver Gossi p task as a func-
The second bug is that each node tells each of its peetn of time.

about every available block, even blocks that the peers

have already retrieved. This bug is actually expected be- ths start t at about 40 dd d duall
havior, but in writing expectations for Pip we realized it paths starts out at about 2L ms and degrades gradually
was inefficient. to about 50 ms after running for three minutes. We

traced the bottleneck to a task calléel i ver Gossi p

Lessons: We were interested in how notifications that initially takes 0 ms to run and degrades gradually to
about each block propagate through the mesh. Becaus#out 11 ms. We found this bug using the GUI. First, we
some notifications are pulls caused by timers, the propexamined the end-to-end latency as a function of time.
agation path is not causal. Thus, we had to write ad-Seeing an error there, we checked each class of tasks in
ditional annotations fowirtual paths in addition to the turn until we found the gossip task responsible for the
causal paths that Mace annotated automatically. degradation. Figure 11 shows the time consumed by

Pip can find application errors using the reconciler,the gossip task as a function of time. The reason for
not just using the path checker or the GUI. It would havedel i ver Cossi p degrading over time is unclear but
been easy to write expectations asserting that no nodaight be thatdel i ver Gossi p logs a list of all gos-
learns about the same block from the same peer twicesip previously received.
but it was not necessary because the reconciler flagged
such repeated notifications as reused message IDs. 6 Related work

Pip is one of many approaches to finding structure

5.4 RanSub and performance bugs in distributed systems. Below,

RanSub [14] is a building block for higher-level pro- we highlight two categories of debugging approaches:
tocols. It constructs a tree and tells each node in the trepath analysis tools and automated expectation checking.
about a uniformly random subset of the other nodes irPip is the first to combine the two approaches. Finally,
the tree. RanSub periodically performs two phases ofve discuss the relationship between Pip and high-level
communicationdistributeandcollect In the distribute languages for specifying and developing distributed sys-
phase, each node starting with the root sends a randoigms.
subset to each of its children. In the collect phase, eac

node starting with the leaves sends a summary of its stat 1 Patf|1 anegS|s tools h deled the behavi
to its parent. Interior nodes send a summary message Several previous systems have modeled the behavior

only after receiving a message from all children. OurOf _distributed systems_as a coIIection_of causal paths.
RanSub tests involved 100 hosts and ran for 5 minutes.ThIS approach is particularly appropriate for systems

Because RanSub is written in Mace, we were able todriven by user requests, as it captures the delays and re-
generate all needed annotations automatically source consumption associated with each request. Path-

based debugging can enable programmers to find aber-

Bugs: We found two bugs in RanSub and fixed one of rant paths and to optimize both throughput and end-to-
them. First, each interior node should only send a sumend latency.
mary message to its parent after hearing from all of its Project 5 [1] infers causal paths from black-box net-
children. Instead, the first time the collect phase ranwork traces. By doing so, it can help debug systems with
each interior node sent a summary message after hearingnavailable source code. Deploying black-box debug-
from one child. We found this bug by writing an expecta- ging, at least in theory, requires less effort than annotat-
tion for the collect-and-distribute path; the first round of ing source code. However, Project 5 can only report what
communication did not match. The root cause was thait can infer. Its granularity is limited to host-to-host com
interior nodes had some state variables that did not gahunication, and it often reconstructs paths incorrectly. |
initialized until after the first communication round. We particular, interesting paths, including infrequent gath
fixed this bug. or paths with long or variable delays, may be lost.

The second bug we found in RanSub is a performance Magpie [2] reconstructs causal paths based on OS-
bug. The end-to-end latency for collect-and-distributelevel event tracing. Like Project 5, Magpie can oper-

uration (ms)

Taskd

In Proc. 3rd Symp. on Networked Systems Design and Implenoen(&dtSDI) San Jose, CA, May, 2006 13

ate without access to source code. However, Magpie caspecific rules. MC checks all code paths exhaustively
construct paths with much higher accuracy than Project Hut is limited to single-node bugs that do not depend
can, because OS-level tracing provides more informaen dynamic state. MC works well for finding the root
tion than network tracing alone. Magpie clusters causatauses of bugs directly, while Pip detects symptoms and
paths using a string-edit-distance algorithm and identi-highlights code components that might be at fault. MC
fies outliers—that is, small clusters. focuses on individual incorrect statements, while Pip fo-

Like Pip, Pinpoint [5] constructs causal paths by an-cuses on the correctness of causal paths, often spanning
notating applications or platforms to generate events anchultiple nodes. MC finds many false positives and bugs
maintain a unique path identifier per incoming requestwith no effect, while Pip is limited to actual bugs present
Like Pip and Magpie, Pinpoint can construct paths within a given execution of the application.
a high degree of confidence because it does not rely on Paradyn [19] is a performance measurement tool for
inference. Like Magpie but unlike Pip, Pinpoint assumescomplex parallel and distributed software. The Para-
that anomalies indicate bugs. Pinpoint uses a probabilisdyn Configuration Language (PCL) allows programmers
tic, context-free grammar to detect anomalies on a perto describe expected characteristics of applications and
event basis rather than considering whole paths. Doinglatforms, and in particular to describe metrics; PCL
so significantly underconstrains path checking, which,seems somewhat analogous to Pip’s expectation lan-
as the authors point out, may cause Pinpoint to validatguage. However, PCL cannot express the causal path
some paths with bugs. structure of threads, tasks and messages in a program,

All three of these existing causal path debugging sysnor does Paradyn reveal the program’s structure.
tems rely on statistical inference to find unusual behavior, . g

6.3 Domain-specific languages

and assume that unusual behavior indicates bugs. Do- o . .
. o . Developers of distributed systems have a wide variety
ing so has two drawbacks. First, inference requires large

traces with many path instances. Second, these Systerﬁgspeuflcatlon and implementation languages to choose

: . ; . .. from. Languages like Estelle [114-calculus [20], join-
can all miss bugs in common paths or incorrectly identify .
: calculus [9], and P2 [18] embrace a formal, declarative
rare but valid paths.

The accuracy and granularity of existing causal pathapproach. Erlang [3] and Mace [12] use an imperative

debugging tools are limited by what information they can gpproach, with libraries and language constructs special-

get from traces of unmodified applications. In practice,'zed for concurrency and communication. Finally, many

these systems entail a form of gray-box debugging leverProgrammers still use traditional, general-purpose lan-

; ; L . . guages like Java and C++.
aging prior algorithmic knowledge, observations, and in- Pio is intended primarily for develobers using im-
ferences to learn about the internals of an unmodifiable_' ' P y P 9

distributed system. In contrast, Pip assumes the abilit)p(:"r'fjltlve languages, including both general-purpose lan-
to modify the source for at least parts of a distributed 24 29€S and domain-specific languages for building dis-

system, and it provides richer capabilities for exploringmbmed systems. Pip provides language bindings for

. . . Java, C, C++, and Mace. While programmers using

systems without prior knowledge and for automatically . . g

. . . . declarative languages can verify the correctness of their
checking systems against high-level expectations.

programs through static analysis, Pip is still valuable for

6.2 Automated expectation checking monitoring and checking dynamic properties of a pro-
Several existing systems support expressing and'am, such as latency, throughput, concurrency, and node

checking expectations about structure or performancdailure.

Some of the systems operate on traces, others on speg- .

ifications, and still others on source code. Some suppor Conclusions

checking performance, others structure, and others both. Pip helps programmers find bugs in di_stributed Sys-
Some, but not all, support distributed systems. tems by comparing actual system behavior to the pro-

PSpec [21] allows programmers to write assertiongdrammer’s expectations about that behavior. Pip pro-
about the performance of systems. PSpec gathers info /ides visualization of expected and actual behavior, al-
mation from application logs and runs after the applica- owing programmers to examine behavior th_at V|ola.tes
tion has finished running. The assertions in PSpec aqhe'r expressed expectations, a_nd to search mterac_tlvely
pertain to the performance or timing of intervals, where " additional unexpected behavior. The same techniques

an interval is defined by two events (a start and an endgan help programmers learn about an unfamiliar system

in the log. PSpec has no support for causal paths or fof" Monitor a deployed system. ,
application structure in general. Pip can often generate any needed annotations auto-

Meta-level compilation (MC) [8] checks source code matically, for applications constructed using a supported
middleware layer. Pip can also generate initial expec-

for static bugs using a compiler extended with system-""" _ _
tations automatically. These generated expectations are

In Proc. 3rd Symp. on Networked Systems Design and Implenoen(&dtSDI) San Jose, CA, May, 2006 14

often the most readable description of system behavior, lays. InProc. SOSPBrighton, UK, Oct. 2005.

and bugs can be obvious just from reading them. (19] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
We applied Pip to a variety of distributed systems, Hollingsworth, R. B. Irvin, K. L. Karavanic, K. Kun-
large and small, and found bugs in each system. chithapadam, and T. Newhall. The paradyn parallel per-

formance measurement tolEEE Computer28(11):37—
References 46, Nov. 1995.

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, [20] R.Milner. The polyadicr-calculus: A tutorial. Technical
and A. Muthitacharoen. Performance debugging for dis- Report ECS-LFCS-91-180, University of Edinburgh, Oct.

tributed systems of black boxes. Rroc. SOSPBolton 1991

Landing, NY, Oct. 2003. [21] S. E. Perland W. E. Weihl. Performance assertion check-
[2] P.Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using ing. In Proc. SOSPAsheville, NC, Dec. 1993.

Magpie for request extraction and workload modeling. In [22] A. Rodriguez, C. Killian, S. Bhat, D. Kostic, and A. Vah

Proc. OSDJ San Francisco, CA, Dec. 2004. dat. MACEDON: Methodology for Automatically Cre-
[3] R. Carlsson, B. Gustavsson, E. Johansson, T. Lindgren, ~ &ting, Evaluating, and Designing Overlay Networks. In

S.-O. Nystrom, M. Pettersson, and R. Virding. Core Er- Proc. NSD] San Francisco, CA, April 2004. .

lang 1.0 language specification. Technical Report 030,[23] A. Rowstron and P. Druschel. Pastry: Scalable, Dis-

Uppsala University, Nov. 2000. tributed Object Location and Routing for Large-scale
[4] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, Peer-to-Peer Systems. Rroc. Middleware'2001 Hei-

A. Rowstron, and A. Singh. SplitStream: High- delberg, Germany, Nov. 2001.

bandwidth multicast in cooperative environments. In [24] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Dr-

Proc. SOSPBolton Landing, NY, Oct. 2003. uschel. SCRIBE: The Design of a Large-scale Event No-
[5] M. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, tification Infrastructure. I8rd Intl. Workshop on Net-

A. Fox, and E. Brewer. Path-based failure and evolution _ Worked Group Communicatioiondon, UK, Nov. 2001.

2004. S. Spence. FAB: Building distributed enterprise disk ar-
[6] F.Cristian and F. Schmuck. Agreeing on processor group ~ 'ays from commodity components. Rroc. ASPLOS

membership in timed asynchronous distributed systems. Boston, MA, 2004.

Report CSE95-428, UC San Diego, 1995. [26] A.Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic,
[7] C. Dickens.Great ExpectationsChapman & Hall, Lon- J. Chase, and D. Becker. Scalability and Accuracy in a

don, 1861. Large-Scale Network Emulator. Rroc. OSD) Boston,

[8] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking MA, 2002.
system rules using system-specific, programmer-writter{27] M. Welsh, D. Culler, and E. Brewer. SEDA: an architec-
compiler extensions. IRroc. OSD] San Diego, CA, Dec. ture for well-conditioned, scalable internet services. In
2000. Proc. SOSPBanff, Canada, 2001.

[9] C. Fournetand G. Gonthier. The join calculus: alanguage
for distributed mobile programming. IRroc. APPSEM Notes
Caminha, Portugal, 2000.

[10] P. Godefroid. Software model checking: the VeriSoft ap 1pip is the main character @reat Expectationf?].
proach.Formal Methods in System Desid6(2):77-101,

Mar. 2005. 2Source code and screenshots for Pip are available at
[11] ISO 9074. Estelle: A formal description technique lshse http://issg. cs. duke. edu/ pi p.
on an extended state transition model. 1987. 3Mace is an ongoing redesign of the MACEDON [22]

[12] Mace. http://mace.ucsd.edu, 2005.

[13] D. Kosti¢, R. Braud, C. Killian, E. Vandekieft, J. W. An
derson, A. C. Snoeren, and A. Vahdat. Maintaining high
bandwidth under dynamic network conditions. Rroc.
USENIX 2005Anaheim, CA, Apr. 2005.

[14] D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and
A. Vahdat. Using random subsets to build scalable net-
work services. IProc. USITSSeattle, WA, Mar. 2003.

[15] D. Kaosti€, A. Rodriguez, J. Albrecht, and A. Vahdat.|Bu
let: High bandwidth data dissemination using an overlay
mesh. InProc. SOSPBolton Landing, NY, Oct. 2003.

[16] L. Lamport. The temporal logic of actions.ACM
TOPLAS 16(3):872—923, May 1994.

[17] L. Lamport. The part-time parliamentACM TOCS
16(2):133-169, May 1998.

[18] B. T. Loo, T. Condie, J. Hellerstein, P. Maniatis,
T. Roscoe, and |. Stoica. Implementing declarative over-

language for building distributed systems.

