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Abstract
Existing virtual memory systems usually work well with

applications written in C and C++, but they do not provide
adequate support for garbage-collected applications. The
performance of garbage-collected applications is sensitive
to heap size. Larger heaps reduce the frequency of garbage
collections, making them run several times faster. How-
ever, if the heap is too large to fit in the available RAM,
garbage collection can trigger thrashing. Existing Java vir-
tual machines attempt to adapt their application heap sizes
to fit in RAM, but suffer performance degradations of up to
94% when subjected to bursts of memory pressure.

We present CRAMM (Cooperative Robust Automatic
Memory Management), a system that solves these prob-
lems. CRAMM consists of two parts: (1) a new virtual
memory system that collects detailed reference informa-
tion for (2) an analytical model tailored to the underlying
garbage collection algorithm. The CRAMM virtual mem-
ory system tracks recent reference behavior with low over-
head. The CRAMM heap sizing model uses this infor-
mation to compute a heap size that maximizes throughput
while minimizing paging. We present extensive empirical
results demonstrating CRAMM’s ability to maintain high
performance in the face of changing application and sys-
tem load.

1 Introduction
The virtual memory (VM1) systems in today’s operating
systems provide relatively good support for applications
written in the widely-used programming languages of the
80’s and 90’s, such as C and C++. To avoid the high
overhead of heavy page swapping, it is sufficient for these
applications to fit their working sets in physical mem-
ory [16]. VM systems typically manage physical mem-
ory memory with an approximation of a global LRU pol-
icy [12, 13, 15, 16, 22], which works reasonably well for
legacy applications.

However, garbage-collected languages are now increas-
ingly prevalent, ranging from general-purpose languages

like Java and C# to scripting languages like Python and
Ruby. Garbage collection’s popularity derives from its
many software engineering advantages over manual mem-
ory management, including the elimination of dangling
pointer errors and a drastic reduction of memory leaks.

The performance of garbage-collected applications is
highly sensitive to heap size. A smaller heap reduces
the amount of memory referenced, but requires frequent
garbage collections that hurt performance. A larger heap
reduces the frequency of collections, thus improving per-
formance by up to 10x. However, if the heap cannot fit
in available RAM, performance drops off suddenly and
sharply. This is because garbage collection has a large
working set (it touches the entire heap) and thus can trigger
catastrophic page swapping that degrades performance and
increases collection pauses by orders of magnitude [18].
Hence, heap size and main memory allocation need to
be coordinated to achieve good performance. Unfortu-
nately, current VM systems do not provide sufficient sup-
port for this coordination, and thus do not support garbage-
collected applications well.

Choosing the appropriate heap size for a garbage-
collected application—one that is large enough to maxi-
mize throughput but small enough to avoid paging—is a
key performance challenge. The ideal heap size is one
that makes the working set of garbage collection just fit
within the process’s main memory allocation. However, an
a priori best choice is impossible in multiprogrammed en-
vironments, since the amount of main memory allocated
to each process constantly changes. Existing garbage-
collected languages either ignore this problem, allowing
only static heap sizes, or adapt the heap size dynamically
using mechanisms that are only moderately effective. For
example, Figure 1 shows the effect of dynamic memory
pressure on an industrial-strength Java virtual machine,
BEA’s JRockit [7], running a variant of the SPECjbb2000
benchmark. The solid line depicts program execution when
given a fixed amount of RAM, while the dashed line shows
execution under extra periodic bursts of memory pressure.
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Figure 1: Impact of bursts of memory pressure on the per-
formance on the JRockit Java virtual machine, which de-
grades throughput by as much as 94%.

This memory pressure dilates overall execution time by a
factor of 220%, and degrades performance by up to 94%.

The problem with these adaptive approaches is not that
their adaptivity mechanism is broken, but rather that they
are reactive. The only way these systems can detect
whether the heap size is too large is to grow the heap un-
til paging occurs, which leads to unacceptable performance
degradation.

Contributions: This paper makes the following con-
tributions. It presents CRAMM (Cooperative Robust Au-
tomatic Memory Management), a system that enables
garbage-collected applications topredict an appropriate
heap size, allowing the system to maintain high perfor-
mance while adjusting dynamically to changing memory
pressure.

CRAMM consists of two parts; Figure 2 presents an
overview. The first part is the CRAMM VM system that
dynamically gathers theworking set size (WSS)of each
process, where we define the WSS asthe main memory
allocation that yields a trivial amount of page swapping.
To accomplish this, CRAMM VM maintains separate page
lists for each process and computes anLRU reference his-
togram [25, 27] that captures detailed reference informa-
tion while incurring little overhead (around 1%).

The second part of CRAMM is its heap sizing model,
which controls application heap size and is independent of
any particular garbage collection algorithm. The CRAMM
model correlates the WSS measured by the CRAMM VM
to the current heap size. It then uses this correlation to se-
lect a new heap size that is as large as possible (thus maxi-
mizing throughput) while yielding little or no page faulting
behavior. We apply the CRAMM model to five different
garbage collection algorithms, demonstrating its general-
ity.

We have implemented the CRAMM VM system in
the Linux kernel and the CRAMM heap sizing model in
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Figure 2: The CRAMM system. The CRAMM VM system
efficiently gathers detailedper-processreference informa-
tion, allowing the CRAMM heap size model to choose an
optimal heap size dynamically.

the Jikes RVM research Java virtual machine [3]. We
present the results of an extensive empirical evaluation of
CRAMM, including experimental measurements across 20
benchmarks and 5 garbage collectors, as well as compar-
ison with two industrial Java implementations. These re-
sults demonstrate CRAMM’s effectiveness in maintaining
high performance in the face of changes in application be-
havior and system load.

This work builds on our previous study that introduced
an early version of the CRAMM heap sizing model [28].
That study presented a model that was evaluated only in
the context of trace-driven simulations. This paper builds
on the previous study significantly. It refines the heap siz-
ing model to take into account copying and non-copying
regions (required to handle generational collectors), pro-
vides more accurate startup adjustment, and more effec-
tively adapts to dynamic memory allocation by polling the
underlying VM between collections. Furthermore, it is im-
plemented in a fully functional kernel and JVM, introduces
implementation strategies that make its overhead practi-
cal, has more efficient overhead control mechanisms, and
presents extensive empirical results.

In addition to serving the needs of garbage-collected
applications, the CRAMM VM system is the first sys-
tem to our knowledge to provide per-process and per-file
page management while efficiently gathering detailed ref-
erence histograms. This information can be used to im-
plement a wide range of recently proposed memory man-
agement systems including compressed caching [27], adap-
tive LRU policies like EELRU [25], and informed prefetch-
ers [20, 24].



The remainder of this paper is organized as follows. Sec-
tion 2 presents an overview of garbage collection algo-
rithms and terminology used in this paper. Section 3 de-
rives the CRAMM heap sizing model, which relates appli-
cation working set size to heap size. Section 4 describes
the CRAMM VM system, which gathers detailed statistics
allowing it to compute the precise current process work-
ing set size. Section 5 presents empirical results, compar-
ing static and previous adaptive approaches to CRAMM.
Section 6 presents work most closely related to ours, and
Section 7 concludes.

2 GC Behavior and Terminology

A garbage collector (GC)periodically and automatically
finds and reclaims heap-allocated objects that a program
can no longer possibly use. We now sketch how, and
when, a GC may do this work, and along the way intro-
duce GC terminology and concepts critical to understand-
ing CRAMM.

Garbage collectors operate on the principle that if an
object is unreachablevia any chain of pointers starting
from roots—pointers found in global/static variables and
on thread stacks—then the program cannot possibly use
the object in the future, and the collector can reclaim and
reuse the object’s space. Through a slight abuse of termi-
nology, reachable objects are often calledlive and unreach-
able onesdead. Reference counting collectors determine
(conservatively) that an object is unreachable when there
are no longer any pointers to it. Here, we focus primarily
on tracing collectors, which actually trace through pointer
chains from roots, visiting reachable objects.

The frequency of collection is indirectly determined by
theheap size: the maximum virtual memory space that may
be consumed by heap-allocated objects. When allocations
have consumed more than some portion of the heap size
(determined by the collection algorithm), collection is in-
voked. Thus, the smaller the heap size, the more frequently
GC occurs, and the more CPU time is spent on collection.

GC algorithms divide the heap into one or moreregions.
A non-generationalGC collects all regions during every
collection, triggering collection when some percentage of
the entire heap space is filled with allocated objects. A non-
generational GC may have only one region. In contrast,
generationalGCs partition the regions into groups, where
each group of regions, called ageneration, contains objects
of a similar age. Most commonly, each group consists of
a single region. When some percentage of the space set
aside for a generation has been filled, that generation, and
all younger ones, are collected. Additionally, live objects
that survive the collection are generallypromotedto the
next older generation. New objects are typically allocated
into anurseryregion. This region is usually small, and thus
is collected frequently, but quickly (because it is small).
The generational configurations that we consider here have

two generations, a nursery and amature space. Because
nursery collection generally filters out a large volume of
objects that die young, mature space grows more slowly—
but when it fills, that triggers afull heapcollection.

Orthogonal to whether a collector is generational is how
it reclaims space.Mark-sweep (MS)collection marks the
reachable objects, and then sweeps across the allocation
region to reclaim the unmarked ones. MS collection is
non-copyingin that it does not move allocated objects. In
contrast,copyingcollectors proceed by copying reachable
objects to an empty copy space, updating pointers to re-
fer to the new copies. When done, it reclaims the previous
copy space. We do not consider here collectors that com-
pact in place rather than copying to a new region, but our
techniques would work just as well for them. Notice that
collectors that have a number of regions may handle each
region differently. For example, a given GC may collect
one region by copying, another by MS, and others it may
never collect (so-calledimmortal spaces).

Finally, allocation and collection are intertwined. When
allocating into an MS-managed region, the allocator may
use free lists to find available chunks of space. When allo-
cating into a copying region, it typically increments a free
space pointer through the initially empty space. For gener-
ational collection, the nursery is usually a copy-collected
space, thus allowing fast allocation. The mature space,
however, may be a copying- or a non-copying-collected re-
gion, depending on the particular collector.

3 CRAMM Heap Sizing Model

The goal of the CRAMM heap sizing model is to relate
heap sizeandworking set size, so that, given a current real
memory allocation, we can determine a heap size whose
working set size just fits in the allocation. The working
set size (WSS) for a GCed application is determined al-
most entirely by what happens during full collections, be-
cause full collections touch every reachable heap object.
Since live and dead objects are generally mixed together,
the working set includes all heap pages used for allocated
objects. It also includes the space needed for copied sur-
vivors of copying regions. Thus, each non-copying region
contributes its size to the working set, while each copying
region adds its sizeplus the volume of copied survivors,
which can be as much as the size of the copying region in
the worst case.

Several properties of GCed applications are impor-
tant here. First, given adequate real memory, perfor-
mance varies with heap size. For example, Figure 3
depicts the effect of different amounts of memory (the
size of the garbage-collected heap) on performance. This
graph is for a particular benchmark and garbage collector
(the SPECjvm98 benchmarkjavac with a mark-sweep
garbage collector), but it is typical. On the left-hand side,
where the heap is barely large enough to fit the applica-
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Figure 3: The effect of heap size on performance and work-
ing set size (the number of pages needed to run with at most
a 5% slowdown from paging).

tion, execution time is high. As the heap size increases,
execution time sharply drops, finally running almost 250%
faster. This speedup occurs because a larger heap reduces
the number of collections, thus reducing GC overhead. The
execution time graph has a 1/x shape, with vertical and hor-
izontal asymptotes.

However, theworking set size—here given as the amount
of memory required to run with at most 5% elapsed time
added for paging—has a linear shape. The heap size deter-
mines the working set size, as previously described. Our
earlier work explores this in more detail [28]. The key ob-
servation is that working set size is very nearly linear in
terms of heap size.

3.1 GC Working Set Size and Heap Sizing Model

We define heap size,H, as the maximum amount of space
allowed to contain heap objects (and allocation structures
such as free lists) at one time. If non-copy-collected re-
gions useN pages and copy-collected regions allocate ob-
jects intoC pages, thenH = N + 2×C. We must reserve
up toC pages into which to copy survivors from the orig-
inal C space, and the collector needs both copies until it
is done. The total WSS for the heap during full collection
is determined by the pages used for copied survivors,CS:
WSS= N +C+CS. Thus, heapWSSvaries fromN +C to
N +2×C.

As a program runs, its usage of non-copying and copy-
ing space may vary, but it is reasonable to assume that the
balance usually does not change rapidly from one full col-
lection to the next. We call the ratio of allocable space
(N +C) to heap size (N + 2×C) the heap utilization, u.
It varies from 50% forN = 0 to 100% forC = 0. Given
an estimate ofu, we can determineN +C from H, but to
determineWSS, we also need to estimateCS. Fortunately,
CS is a property of the application (volume oflive objects
in copy-collected regions), not of the heap size. As with
u, we can reasonably assume thatCSdoes not change too

rapidly from one full collection to the next.

When adjusting the heap size, we use this equation as our
model: ∆H = (∆WSS−∆CS)/u. Notice that∆WSSis just
our target WSS (i.e., the real memory allocation the OS is
willing to provide) minus our current WSS. The CRAMM
VM provides both of these values to the heap size manager.

Starting out: Once the JVM reaches the point where it
needs to calculate an initial heap size, it has touched an ini-
tial working set of code and data. Thus, the space available
for the heap is exactly the volume of free pages the VM
system is willing to grant us (call thatFree). We wish to set
our heap size so that our worst case heap WSS during the
first full collection will not exceedFree. But the worst heap
WSS is exactly the heap size, so we setH to the minimum
of Freeand the user-requested initial heap size.

Tracking the parameters: To determine the heap uti-
lization u, we simply calculate it at the end of each collec-
tion, and assume that the near future will be similar. Es-
timating ∆CS is more involved. We track the maximum
valuefor CSthat we have seen so far,maxCS, and we also
track the maximumincrementwe have seen toCS, maxC-
SInc. If, after a full collection,CSexceedsmaxCS, we as-
sumeCS is increasing and estimate∆CS= maxCSInc/2,
i.e., that it will grow by 1/2 of the largestincrement. Oth-
erwise we estimate∆CSasmaxCS−CS, i.e., thatCS for
the next full collection will equalmaxCS. After calculating
∆CS, we decay maxCS, multiplying it by 0.98 (a conser-
vative policy to maintain stablemaxCS), and maxCSInc,
multiplying it by 0.5 (a more rapidly adjusting policy so
that maxCSIncdecays away quickly oncemaxCSreaches
its stable state).

Handling nursery collections: Because nursery collec-
tions do not process the whole heap, theirCSvalue under-
estimates survival from future full collections. So, if the
nursery size is less than 50% of allocable space, we do not
updateH. For larger nurseries, we estimate∆CSby mul-
tiplying the size of uncollected copying space times 1+ σ,
whereσ is thesurvival rateof the nursery collection, i.e.,
CS/ν, whereν is the size of the nursery.

This model is a straightforward generalization of our
previous one [28], taking into account copying and non-
copying regions and modeling startup effects, and elimi-
nates the overhead (8% - 23%) caused by inaccurate startup
adjustment in our previous model. Tracking ofmaxCSand
maxCSIncalso helps avoid paging. We periodically request
the currentFreevalue on allocation slow path, when the al-
locator tries to request a new chunk of memory from the
VM (128KB for MS and 1MB for others). OnceFree is
less thanmaxCS, we trigger an immediate collection and
resize the heap. This new polling mechanism allows us to
adapt to bursts of memory pressure more quickly and ef-
fectively than our previous model.



4 VM System Design and Implementation
We now present the CRAMM VM system. We first de-
scribe why standard VM systems are insufficient for pre-
dictively adaptive heap sizing. We then describe the struc-
ture of the CRAMM VM system, followed by detailed dis-
cussions of how it calculates working set sizes and how it
controls histogram collection overhead.

Given the heap sizing model presented in Section 3.1, the
underlying VM system must provide to a GC-based pro-
cess both its working set size (WSS) and its main memory
allocation,2 thus allowing the GC to choose a proper heap
size. Unfortunately, we cannot easily obtain this informa-
tion from standard VM systems, including the Linux VM.

Linux uses a global page replacement policy that man-
ages each physical page within a single data structure for all
processes and files. Linux thus has onlyordinal informa-
tion about all pages, giving each page a ranking among the
total pool of pages. It has nocardinal information about the
reference rates, nor any separation of pages according to
process or file. Consequently, it cannot track theLRU ref-
erence histogram—the distribution of memory references
to pages managed by an LRU queue—which is needed to
determine the WSS for each process. Furthermore, it can-
not predict how much it could reduce the allocations of files
and other processes without inducing heavy page faulting.
It therefore cannot wisely choose a main memory alloca-
tion to offer to a GC-based process. Finally, even if it chose
to reduce the allocations for some files or other processes,
global page replacement cannot guarantee that it will re-
place the pages of those processes first.

The CRAMM VM system addresses these limitations.
Figure 2 gives an overview of the CRAMM VM structure
and interface. For each file and process, it keeps separate
page lists and an LRU reference histogram. It also tracks
the mean cost of a major page fault (one that requires disk
I/O) so that, along with the histogram and a desired maxi-
mum fault rate, it can compute the WSS of a process.

Its ability to compute the WSS of each file and process
allows the CRAMM VM to calculate new allocations to
each without causing thrashing by assigning too small an
allocation. When an allocation is reduced, the separate
page lists allow the VM to prefer reclaiming pages from
those files and processes that are consuming more than their
allocation.

A garbage collector communicates with the CRAMM
VM through system calls. First, the collector registers it-
self as a cooperative process with the CRAMM VM at ini-
tialization time. The VM responds with the current amount
of free memory, allowing the collector to pick a reason-
able initial heap size. Second, after each heap collection,
the collector requests a WSS estimate and a main memory
allocation from the VM. The collector then uses this infor-
mation to select a new heap size. If it changes its heap size,
it calls on the VM to clear its old histogram, since the new

heap size will exhibit a different reference pattern.
Last, the collector periodically polls the VM for an es-

timate of thefree memory—the main memory space that
could be allocated to the process without causing others
to thrash. If this value is unexpectedly low, then memory
pressure has suddenly increased. Either some other sys-
tem activity is aggressively consuming memory (e.g. the
startup of a new process), or this process has more live data
(increasedheap utilization), and thus is using more mem-
ory than expected. The collector responds by pre-emptively
collecting the heap and selecting a new heap size.

4.1 CRAMM VM Structure

The CRAMM VM allocates a data structure, called
mem info, for eachaddress space(aninode for files or
anmm struct for processes). This structure comprises a
list of pages, an LRU reference histogram, and some addi-
tional control fields.

Figure 4 shows the page list structure of a process. The
CRAMM VM manages eachaddress space(the space of
a file or a process) much like the Linux VM manages its
global queue. For the in-memory pages of each address
space, it maintains asegmented queue(SEGQ) structure
[5], where theactive listcontains the more recently used
pages and theinactive listcontains those less recently used.
When a new page is faulted into memory, the VM places it
at the head of the active list. If the addition of this page
causes the active list to be too large, it moves pages from
the tail of the active list to the head of the inactive list.
When the process exceeds its main memory allocation, the
VM removes a page from the tail of the inactive list and
evicts it to disk. This page is then inserted at the head of
a third segment, theevicted list. When an address space’s
WSS exceeds its main memory allocation, the evicted list’s
histogram data allows the VM to project how large the al-
location must be to capture the working set.

The active list is managed using a CLOCK algorithm.
The inactive list is ordered by each page’s time of removal
from the active list. The relative sizes of these two lists
is controlled by an adaptive mechanism described in Sec-
tion 4.3. Like a traditional SEGQ, all inactive pages have
their access permissions removed, forcing any reference to
an inactive page to cause a minor page fault. When such a
page fault occurs, the VM restores the page’s permissions
and promotes it into the active list, and then updates the ad-
dress space’s histogram. The insertion of a new page into
the active list may force other pages out of the active list.
The VM manages the evicted list similarly; the only dif-
ference is that a reference to an evicted page triggers disk
activity.

Replacement algorithm: The CRAMM VM places
eachmem info structure into one of two lists: theun-
used listfor the address spaces of files for which there are
no open file descriptors, and thenormal listfor all other ad-



Buffer

Active (CLOCK) Inactive (LRU) Evicted (LRU)

Major  fault

Evicted

Refill & Adjustment

Minor fault

Pages protected by turning off

permissions. Referencing a page

triggers a minor fault.

Pages evicted to disk. Referencing a

page triggers a major fault.

Header

Page Des

AVL node

Recently used pages.

References ignored

bin0

Level_1

Level_2

Histogram

Hit counters updated after

every minor or major fault

Figure 4: Segmented queue page lists for one address space (file or process).

dress spaces. When the VM must replace a page, it prefer-
entially selects amem info from the unused list and then
reclaims a page from the tail of that inactive list. If the un-
used list is empty, the VM selects amem info in a round
robin manner from the normal list, and then selects a page
from the tail of its inactive list.

As Section 5.2 shows, this eviction algorithm is less ef-
fective than the standard Linux VM replacement algorithm.
However, the CRAMM VM structure can support standard
replacement policies and algorithms while also present-
ing the possibility of new policies that control per-address-
space main memory allocation explicitly.

Available Memory: A garbage collector will periodi-
cally request that the CRAMM VM report theavailable
memory—the total main memory space that could be allo-
cated to the process. Specifically, the CRAMM VM reports
the available memory (available) as the sum of the pro-
cess’s resident set size (rss), the free main memory (free),
and the total number of pages found in the unused list (un-
used). There is also space reserved by the VM (reserved)
to maintain a minimal pool of free pages that must be sub-
tracted from this sum:

available= rss+ free+unused− reserved

This value is useful to the collector because the CRAMM
VM’s per-address-space structure allows it to allocate this
much space to a process without causing any page swap-
ping. Standard VM systems that use global memory man-
agement (e.g., Linux) cannot identify the unused file space
or preclude the possibility of page swapping as memory is
re-allocated to a process.

4.2 Working Set Size Calculation

The CRAMM VM tracks the current working set size of
each process. Recall that the WSS isthe smallest main
memory allocation for which page faulting degrades pro-
cess throughput by less than t%. If t = 0, space may
be wasted by caching pages that receive very little use.
When t is small but non-zero, the WSS may be substan-
tially smaller than fort = 0, yet still yield only trivial page

swapping. In our experiments, we choset = 5%.

In order to calculate the WSS, the VM maintains an LRU
reference histogramh [25, 27] for each process. For each
reference to a page at positioni of the process’s page lists,
the VM incrementsh[i].3 This histogram allows the VM
to calculate the number of page faults that would occur
for each possible memory allocation. The VM also mon-
itors the mean cost of a major fault (majfc) and the time
T that each process has spent on the CPU. To calculate
the WSS, it scans the histogram backward to find the al-
location at which the number of page faults is just below
(T × t)/majfc.

Page list position: When a page fault occurs, the ref-
erenced page is found within the page lists using a hash
map. In order to maintain the histograms, the CRAMM
VM must determine the position of that page within the
page lists. Because a linear traversal of the lists would be
inefficient, the VM attaches an AVL tree to each page list.
Figure 4 shows the structure that the VM uses to calcu-
late page list positions in logarithmic time. Specifically,
every leaf node in the AVL tree points to a linked list of
up to k pages, wherek depends on the list into which the
node points. Every non-leaf node is annotated with the total
number of pages in its subtree; additionally, each non-leaf
node is assigned a capacity that is thek-values of its chil-
dren. The VM puts newly added pages into a buffer, and
inserts this buffer into the AVL tree as a leaf node when
that buffer points tok pages. Whenever a non-leaf node
drops to half full, the VM merges its children and adjusts
the tree shape accordingly.

When a page is referenced, the VM first searches lin-
early to find the page’s position in the containing leaf node.
It then walks up the AVL tree, summing the pages in leaf
nodes that point to earlier portions of the page list. Thus,
given thatk is constant and small, determining a page’s list
position is performed in time proportional to the height of
the AVL tree.

Because the CRAMM VM does not track references to
pages in the active list, one leaf node contains pointers to



all pages in the active list, and for this leaf node,k = ∞. For
leaf nodes that point to inactive and evicted pages,k = 64
— a value chosen to balance the work of linear search and
tree traversal. The AVL trees have low space overhead.
Suppose an application hasN 4KB pages, and our AVL
node structure is 24 bytes long. Here, the worst case space
overhead (all nodes half full, and the total number of nodes
is twice the number of leaf nodes) is:

(( N
64×2×2)×24bytes)

(N×4096bytes)
< 0.037%

On average, we observe that the active list contains a
large portion (more than half) of the pages used by a pro-
cess, and thus the overhead is even lower.

LRU histogram: Keeping one histogram entry for every
page list position would incur a large space overhead. In-
stead, the CRAMM VM groups positions intobins. In our
implementation, every bin corresponds to 64 pages (256
KB given the page size of 4 KB). This granularity is fine
enough to provide a sufficiently accurate WSS measure-
ment while reducing the space overhead substantially.

Furthermore, CRAMM dynamically allocates space for
the histogram in chunks of 512 bytes. Given that a his-
togram entry is 8 bytes in size, one chunk corresponds to
histogram entries for 16 MB of pages. Figure 4 shows
the data structure for a histogram. We see that, when a
process or file uses less than 64 pages (256 KB), it uses
only bin0. This approach optimizes space for the common
case of small processes and files. Any process or file that
requires more than 256 KB but less than 16MB memory
uses thelevel 1 histogram. Larger ones use thelevel 2 his-
togram. The worst-case histogram space overhead occurs
when a process uses exactly 65 pages. Here, the histogram
will need about 0.2% of the memory consumed by the pro-
cess. In common cases, it is about 8 bytes per 64 pages,
which is less than 0.004%.

Major fault cost: Calculating WSS requires tracking
the mean cost of a major page fault. The CRAMM VM
keeps a single, system-wide estimatemajfc of this cost.
When the VM initiates a swap-in operation, it marks the
page with a time-stamp. After the read completes, the VM
calculates the time used to load the page. This new time is
then used to updatemajfc.

4.3 Controlling Histogram Collection Overhead

Because the CRAMM VM updates a histogram entry at ev-
ery reference to an inactive page, the size of the inactive list
determines the overhead of histogram collection. If the in-
active list is too large, then too much time will be spent
handling minor page faults and updating histogram entries.
If the inactive list is too small, then the histogram will pro-
vide too little information to calculate an accurate WSS.
Thus, we want the inactive list to be as large as possible
without inducing too much overhead.

The VM sets a target forminor fault overhead, expressed
as a percentage increase in running time for processes, and
dynamically adjusts the inactive list size according to this
target. For each process, the VM tracks its CPU timeT
and a count of its minor page faultsn. It also maintains
a system-wide minor fault costminfc using the same ap-
proach as withmajfc. It uses these values to calculate the
minor fault overhead as(n×minfc)/T. It performs this
calculation periodically, after which it resets bothT andn.
Given a target of 1% and a constant threshold for deviation
from that target of 0.5%, one of three cases may apply:

• If the overhead exceeds 1.5%, the VM decreases the
inactive list size.

• If the overhead is less than 0.5%, it increases the in-
active list size.

• If there are no minor faults during this period, and if
the inactive list is not full, then it moves pages from
the active to the inactive list (refilling the inactive list).

This simple adaptive mechanism, set to a 1% overhead
target and a 0.5% deviation threshold, successfully keeps
the overhead low while yielding sufficient histogram infor-
mation for WSS calculations.

Size adjustment calculations: CRAMM assigns each
process atarget inactive size, initially 0. When CRAMM
adjusts the inactive list size, it is really setting this target
size. Assume that a process hasPA pages in the active list
and PI in the inactive list. Depending on the overhead’s
relationship to its threshold, the new target will be:

• Increase:PI +max(min(PA,PI )/32,8)

• Decrease:PI −max(min(PA,PI )/8,8)

• Refill: PI +max(min(min(PA,PI )/16,256),8)

By choosing the smaller ofPA andPI in these equations,
we make the adjustments small if either list is small, thus
not changing the target too drastically. These formulas also
ensure that at least some constant change is applied to the
target, ensuring a change that will have some effect. We
also put an upper bound on the refilling adjustment to pre-
vent flushing too many pages into the inactive list at a time.
Finally, we decrease the target inactive list size more ag-
gressively than we increase it because low overhead is a
more critical and sensitive goal than accurate histogram in-
formation. We also refill more aggressively than we in-
crease because an absence of minor faults is a strong indi-
cation of an inadequate inactive list size.

Whenever a page is added to the active list, the VM
checks the current inactive list size. If it is less than its tar-
get, then the VM moves several pages from the active list to
the inactive list (8 pages in our implementation). When an



adjustment triggers refilling, the VM immediately forces no
more than 256 pages into the inactive list to match its new
target. As this adjustment only resets the target size and
usually does not move pages immediately, the algorithm is
largely insensitive to the values of these parameters.

Adaptivity triggers: In the CRAMM VM, there are two
events that can trigger an inactive list size adjustment. The
first, adjust interval, is based on running time, and the sec-
ond,adjustcount, is based on the number of minor faults.

Every new process has itsadjust interval initialized to a
default value (116sec). Whenever a process is scheduled, if
its running time since the last adjustment exceeds itsad-
just interval value, then the VM adjusts the inactive list
size.

The adjust count variable is initialized to be
(adjust interval× 2%)/minfc. If a process suffers this
number of minor faults beforeadjust interval CPU time
has passed, then its overhead is well beyond the acceptable
level. At each minor fault, the VM checks whether the
number of minor faults since the last adjustment exceeds
adjust count. If so, it forces an adjustment.

5 Experimental Evaluation

We now evaluate our VM implementation and heap size
manager. We first compare the performance of the
CRAMM VM with the original Linux VM. We then add
the heap size manager to several collectors in Jikes RVM,
and evaluate their performance under both static and dy-
namic real memory allocations. We also compare them
with the JRockit [7] and HotSpot [19] JVMs under simi-
lar conditions. Finally, we run two concurrent instances of
our adaptive collectors under memory pressure to see how
they interact with each other.

5.1 Methodology Overview

We perform all measurements on a 1.70GHz Pentium 4
Linux machine with 512MB of RAM and 512MB of lo-
cal swap space. The processor has 12KB I and 8KB D L1
caches and a 256KB unified L2 cache. We installed both
the “stock” Linux kernel (version 2.4.20) and our CRAMM
kernel. We run each of our experiments six times in single-
user mode, and report the mean of the last five runs. In
order to simulate memory pressure, we use a background
process to pin a certain volume of pages in memory using
mlock.

Application platform: We used Jikes RVM v2.4.1 [3]
built for Linux x86 as our Java platform. We optimized the
system images to the highest optimization level to avoid
run-time compilation of those components. Jikes RVM
uses anadaptivecompilation system, which invokes op-
timization based on time-driven sampling. This makes ex-
ecutions non-deterministic. In order to get comparable de-
terministic executions, we took compilation logs from 7
runs of each benchmark using the adaptive system, and di-

rected the system to compile methods according to the log
from the run with the best performance. This is called the
replaysystem. It is deterministic and highly similar to typ-
ical adaptive system runs.

Collectors: We evaluate five collectors from the MMTk
memory management toolkit [9] in Jikes RVM: MS (mark-
sweep), GenMS (generational mark-sweep), CopyMS
(copying mark-sweep), SS (semi-space), and GenCopy
(generational copying). All of these collectors have a sep-
arate non-copying region for large objects (2KB or more),
collected with the Treadmill algorithm [6]. They also use
separate non-copying regions for meta-data and immortal
objects. We now describe theother regions each collec-
tor uses for ordinary small objects. MS is non-generational
with a single MS region. GenMS is generational with a
copying nursery and MS mature space. CopyMS is non-
generational with two regions, both collected at every GC.
New objects go into a copy region, while copy survivors
go into an MS region. SS is non-generational with a sin-
gle copying region. GenCopy is generational with copy-
ing nursery and mature space. Both generational collectors
(GenMS and GenCopy) use Appel-style nursery sizing [4]
(starts large and shrinks as mature space grows).

Benchmarks: For evaluating JVM performance, we
ran all benchmarks from the SPECjvm98 suite (standard
and widely used), plus those benchmarks from the Da-
Capo suite [10] (an emerging standard for JVM GC evalua-
tion) that run under Jikes RVM, plusipsixql (a publicly
available XML database program) andpseudojbb (a
variant of the standard, often-used SPECjbb server bench-
mark with a fixed workload (140,000 transactions) instead
of fixed time limit). For evaluating general VM perfor-
mance, we used the standard SPEC2000 suite.

Presented: Many results are similar, so to save space
we present results only from some representative collec-
tors and benchmarks. For collectors, we chose SS, MS,
and GenMS to cover copying, non-copying, and genera-
tional variants. For benchmarks, we chosejavac, jack,
pseudojbb, ipsixql, jython, andpmd.

5.2 VM Performance

For the CRAMM VM to be practical, its baseline perfor-
mance (i.e., while collecting useful histogram/working set
size information) must be competitive when physical RAM
is plentiful. We compare the performance of the CRAMM
VM to that of the stock Linux kernel across our entire
benchmark suite.4 For each benchmark, we use the input
that makes it runs longer than 60 seconds.

Figure 5 summarizes the results, which are geometric
means across all benchmarks: SPEC2000int, SPEC2000fp,
and all the Java benchmarks (SPECjvm98, DaCapo, pseu-
dojbb, and ipsixql) with five different garbage collectors.
While the inactive list size adjustment mechanism effec-
tively keeps the cost of collecting histogram data in the
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Figure 5: Virtual memory overhead (% increase in execu-
tion time) without paging, across all benchmark suites and
garbage collectors.

desired range (e.g., 0.59% for SPEC2Kint and 1.02% for
SPEC2Kfp), the slowdown is generally about 1–2.5%. We
believe this overhead is caused by CRAMM polluting the
cache when handling minor faults as it processes page lists
and AVL trees. This, in turn, leads to extra cache misses
for the application. We verified that at the target minor fault
overhead, CRAMM incurs enough minor faults to calculate
the working set size accurately with respect to our 5% page
fault threshold.

CRAMM’s performance is generally somewhat poorer
on the Java benchmarks, where it must spend more time
handling minor faults caused by the dramatic working set
changes between the mutator and collector phases of GCed
applications. However, the fault handling overhead remains
in our target range. Overall, CRAMM collects the neces-
sary information at very low overhead in most cases, and its
performance is competitive with that of the stock kernel.

5.3 Static Memory Allocation

To test our adaptive mechanism, we run the benchmarks
over a range of requested heap sizes with a fixed memory
allocation. We select memory allocations that reveal the
effects of large heaps in small allocations and small heaps
in large allocations. In particular, we try to evaluate the
ability of our mechanism to grow and shrink the heap. We
run the non-adaptive collectors (which simply use the re-
quested heap size) on both the stock and CRAMM ker-
nels, and the adaptive collectors on the CRAMM kernel,
and compare performance.

Figure 6 and Figure 7 show execution time for bench-
marks using MS and GenMS collectors, respectively, with
a static memory allocation. For almost every combination
of benchmark and requested heap size, our adaptive col-
lector chooses a heap size that is nearly optimal. It either
reduces total execution time dramatically, or performs at
least as well as the non-adaptive collector. At the leftmost

side of each curve, the non-adaptive collector runs at a heap
size that does not consume the entire allocation, thus under-
utilizing available memory, collecting too frequently and
inducing high GC overhead. The adaptive collector grows
the heap size to reduce the number of collections without
incurring paging. At the smallest requested heap sizes, this
adjustment reduces execution time by as much as 85%.

At slightly larger requested heap sizes, the non-adaptive
collector performs fewer collections, better utilizing avail-
able memory. One can see that there is an ideal heap size
for the given benchmark and allocation. At that heap size,
the non-adaptive collector performs well—but the adap-
tive collector often matches it, and is never much worse.
The maximum slowdown we observed is 11% across all
the benchmarks. Our working set size calculation uses a
page fault threshold oft = 5%, so we are allowing a triv-
ial amount of paging—while reducing the working set size
substantially.

Once the requested heap size goes slightly beyond the
ideal, non-adaptive collector performance drops dramati-
cally. The working set size is just slightly too large for
the allocation, which induces enough paging to slow exe-
cution by as much as a factor of 5 to 10. In contrast, our
adaptive collector shrinks the heap so that the allocation
completely captures the working set size. By performing
slightly more frequent collections, the adaptive collector
consumes a modest amount of CPU time to avoid a lot of
paging, thus reducing elapsed time by as much as 90%.
When the requested heap size becomes even larger, the
performance of our adaptive collector remains the same.
However, the execution time of the non-adaptive collector
decreases gradually. This is because it does fewer collec-
tions, and it is collections that cause most of the paging.

Interestingly, when we disable adaptivity, the CRAMM
VM exhibits worse paging performance than the stock
Linux VM. LRU-based eviction algorithm turns out to be a
poor fit for garbage collection’s memory reference behav-
ior. Collectors typically exhibit loop-like behavior when
tracing live objects, and LRU is notoriously bad in han-
dling large loops. The Linux VM instead uses an eviction
algorithm based on a combination of CLOCK and a linear
scan over the program’s address space, which happens to
work better in this case.

5.4 Dynamic Memory Allocation

The results given so far show that our adaptive mecha-
nism selects a good heap size when presented with an
unchanging memory allocation. We now examine how
CRAMM performs when the memory allocation changes
dynamically. To simulate dynamic memory pressure, we
use a background process that repeatedly consumes and re-
leases memory. Specifically, it consists of an infinite loop,
in which each iteration first sleeps for 25 seconds, then
mmap’s 50MB memory,mlock’s it for 50 seconds, and
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Figure 6: Static Memory Allocation: MarkSweep
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Figure 7: Static Memory Allocation: GenMS

then unlocks and unmaps the memory. We also modify
how we invoke benchmarks so that they run long enough
to measure: we givepseudojbb a large transaction num-
ber, and iteratejavac 20 times.

Table 1 summarizes the performance of both the non-
adaptive and adaptive collectors under this dynamic mem-
ory pressure. The first column gives the benchmarks and
their initial memory allocation. The second column gives
the collectors and their requested heap sizes respectively.
We set the requested heap size so that the benchmark will
run gracefully in the initial memory allocation. We present
the total elapsed time (T), CPU utilization (cpu), and num-

ber of major faults (MF) for each collector. We compare
them against running the benchmark at the requested heap
size with sufficient memory. The last column shows adap-
tive execution time relative to non-adaptive. We see that,
for each collector, the adaptive mechanism adjusts the heap
size in response to memory pressure, nearly eliminating
paging. The adaptive collectors show high CPU utilization
and dramatically reduced execution times.

Figure 8 illustrates how our adaptive collectors change
the heap size while runningpseudojbb under dynamic
memory pressure. The graphs in the first row demonstrate
how available memory changes over time, and shows the



Benchmark Collector Enough Memory Adaptive Collector Non-Adaptive Collector Adaptive
(Memory) (Heap Size) T(sec) MF T(sec) cpu MF T(sec) cpu MF Yes/No
pseudojbb SS (160M) 297.35 1136 339.91 99% 1451 501.62 65% 24382 0.678
(160M) MS (120M) 336.17 1136 386.88 98% 1179 928.49 36% 47941 0.417

GenMS (120M) 296.67 1136 302.53 98% 1613 720.11 48% 39944 0.420
javac SS (150M) 237.51 1129 259.35 94% 1596 455.38 68% 24047 0.569

(140M) MS (90M) 261.63 1129 288.09 95% 1789 555.92 47% 25954 0.518
GenMS (90M) 249.02 1129 263.69 95% 2073 541.87 50% 33712 0.487

Table 1: Dynamic Memory Allocation: Performance of Adaptive vs. Non-Adaptive Collectors
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Figure 8: Dynamic Memory Allocation (pseudojbb): Heap Adjustment and Throughput

corresponding heap size chosen by each adaptive collector.
We see that as available memory drops, the adaptive col-
lectors quickly shrink the heap to avoid paging. However,
if our adaptive collectors do not periodically poll for cur-
rent available memory and collect before the heap is filled
up, the CPU utilization falls below 80% and can be as low
as 53%. Likewise, the adaptive collectors grow the heap
when there is more available memory. One can also see
that the difference between the maximum and minimum
heap size is approximately the amount of memory change
divided by heap utilizationu, consistent with our working
set size model presented in Section 3.1.

We also compare the throughput of the adaptive and non-
adaptive collectors (the second row in Figure 8), by printing
out the number of transactions finished as time elapses for
pseudojbb. These curves show that memory pressure
has much less impact on throughput when running under
our adaptive collectors. It causes only a small disturbance
and only for a short period of time. The total execution
time of our adaptive collectors is a little longer than that of
the base case, simply because they run at a much smaller
heap size (and thus collect more often) when there is less
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Figure 9: Throughput under dynamic memory pressure,
versus JRockit and HotSpot.

memory. The non-adaptive collectors experience signifi-
cant paging slowdown when under memory pressure.

As previously mentioned, JRockit and HotSpot do not
adjust heap size well in response to changing memory al-
location. Figure 9 compares the throughput of our adap-
tive collectors with that of JRockit and HotSpot. We care-
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Figure 10: Running Two Instances of Adaptive Collectors.

fully choose the initial memory allocation so that the back-
ground process imposes the same amount of relative mem-
ory pressure as for our adaptive collectors. However, being
an experimental platform, Jikes RVM’s compiler does not
produce as efficient code as these commercial JVMs. We
thus normalize the time for each of them to the total ex-
ecution time that each JVM takes to run when given am-
ple physical memory. The results show that both JRockit
and HotSpot experience a large relative performance loss.
The flat regions on their throughput curves indicate that
they make barely any progress when available memory sud-
denly shrinks to less than their working set. Meanwhile,
our adaptive collector changes the heap size to fit in avail-
able memory, maintaining high performance.

Finally, we examine how our adaptive collectors inter-
act with each other. We start two instances using adap-
tive collectors with a certain memory allocation (220MB),
and let them adjust their heap sizes independently. We ex-
plore several combinations of collector and benchmark: the
same collector and benchmark, the same collector and dif-
ferent benchmarks, and different collectors with different
benchmarks. The experiments show that, for all these com-
binations, our adaptive collectors keep CPU utilization at
least 91%. Figure 10 shows the amount of available mem-
ory observed by each collector and their adapted heap size
over time. We see that, after bouncing around a little, our
adaptive collectors tend to converge to heap sizes that give
each job a fair share of available memory, even though
each works independently. The curves of GenMS in the
third graph show how filtering out small nursery collections
helps to stabilize heap size. This experiment still focuses
on how each JVM adapts to dynamic memory allocation.
Although our mechanism effectively prevents each of them
from paging, the memory allocation to each JVM may be
unfair. We leave to future work how best to divide memory
among multiple competing JVMs.

6 Related Work

We now discuss the work most closely related to CRAMM,
first discussing work related to the CRAMM VM and then
addressing GC-based approaches to sizing the heap.

6.1 Virtual Memory

The CRAMM VM computesstack distances, which were
originally designed for trace analysis. Mattson et al. intro-
duced a one-pass algorithm, based on stack distances, that
analyzes a reference trace and produces cache misses for
caches of any size [22]. This algorithm was later adapted
by Kim and Hsu to handle highly-associative caches [21].
However, these algorithms compute a stack distance in lin-
ear time, making them too slow to use inside a kernel. Sub-
sequent work on analyzing reference traces used more ad-
vanced dictionary data structures [1, 8, 17, 23, 26]. These
algorithms calculate a stack distance in logarithmic time,
but do not maintain underlying referenced blocks in order.
This order is unnecessary for trace processing but crucial
for page eviction decisions. The CRAMM VM maintains
pages in a list that preserves potential eviction order, and
uses a separate AVL tree to calculate a stack distance in
logarithmic time.

Zhou et al. present a VM system that also tracks LRU
reference curves inside the kernel [29]. They use Kim and
Hsu’s linear-time algorithm to maintain LRU order and cal-
culate stack distances. To achieve reasonable efficiency,
this algorithm requires the use of large group sizes (e.g.,
1024 pages) that significantly degrade accuracy. They also
use a static division between the active and inactive lists,
yielding an overhead of 7 to 10%. The CRAMM VM
computes the stack distance in logarithmic time, and can
track reference histograms at arbitrary granularities. Fur-
thermore, its inactive list size adjustment algorithm allows
it to collect information accurately from the tail of miss
curves while limiting reference histogram overhead to 1%.

6.2 Garbage Collection

Researchers have proposed a number of heap sizing ap-
proaches for garbage collection; Table 2 provides a sum-
mary. The closest work to CRAMM is by Alonso and Ap-
pel, who also exploit VM system information to adjust the
heap size [2]. Their collector periodically queries the VM
for the current amount of available memory and adjusts the
heap size in response. CRAMM differs from this work
in several key respects. While their approach shrinks the
heap when memory pressure is high, it does not expand



Grows Shrinks Static Dynamic Collector Needs OS
Heap Heap Allocation Allocation Neutral Support Responds to

Alonso et al.[2]
√ √ √ √

memory allocation
Brecht et al.[11]

√ √
pre-defined rules

Cooper et al.[14]
√ √

user supplied target
BC [18]

√ √ √ √
page swapping

JRockit [7]
√ √ √ √

throughput or pause time
HotSpot [19]

√ √ √
throughput and pause time

MMTk [9]
√ √ √ √

live ratio and GC load
CRAMM/AHS [28]

√ √ √ √ √ √
memory allocation

Table 2: A comparison of approaches to dynamic heap sizing.

and thus reduce GC frequency when pressure is low. It also
relies on standard interfaces to the VM system that provide
a coarse and often inaccurate estimate of memory pressure.
The CRAMM VM captures detailed reference information
and provides reliable values.

Brecht et al. adapt Alonso and Appel’s approach to con-
trol heap growth via ad hoc rules for two givenstatic
memory sizes [11]. Cooper et al. dynamically adjust the
heap size of an Appel-style collector according to auser-
suppliedmemory usage target [14]. If the target matches
the amount of free memory, their approach adjusts the heap
to make full use of it. However, none of these approaches
can adjust to dynamic memory allocations. CRAMM au-
tomatically identifies an optimal heap size using data from
the VM. Furthermore, the CRAMM model captures the re-
lationship between working set size and heap size, making
its approach more general and robust.

Our research group previously presented the bookmark-
ing collector (BC), a garbage-collection algorithm that
guides a lightly modified VM system to evict pages that do
not contain live objects and installs “bookmarks” in pages
in response to eviction notifications [18]. These bookmarks
allow BC to collect the heap without touching already
evicted pages, which CRAMM must. One shortcoming of
BC is that it currently cannot grow the heap because it re-
sponds only to page eviction notifications, while CRAMM
both shrinks and grows the heap to fit. We view BC as or-
thogonal and complementary to the work presented here.

7 Conclusion

We present CRAMM, a new system designed to sup-
port garbage-collected applications. CRAMM combines
a new virtual memory system with a garbage-collector-
neutral, analytic heap sizing model to dynamically adjust
heap sizes. In exchange for modest overhead (1–2.5%
on average), CRAMM can improve performance dramat-
ically. CRAMM allows garbage-collected applications to
run with a nearly-optimal heap size in the absence of mem-
ory pressure, and adapts quickly to dynamic memory pres-
sure changes, avoiding paging while providing high CPU
utilization.
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Notes

1We useVM to denotevirtual memorythroughout this paper.

2Themain memory allocationis not the same as theresident set size.
The latter is the amount of main memory currently consumed by aprocess,
while the former is the amount of main memory that the VM system is
willing to let the process consume before evicting its pages.

3Notice that we refer to the histogram as anLRU reference histogram,
but that our page lists are not in true LRU order, and so the histogram
is really aSegQ reference histogram. Also, note that only references to
the inactive and evicted lists are applicable here, since references to active
pages occur without kernel intervention.

4We could not compile and run some SPEC2000 Fortran programs, so
we omit some of the FP benchmarks.


