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Abstract like Java and C# to scripting languages like Python and

Existing virtual memory systems usually work well with Ruby. Garbage collection's popularity derives from its
applications written in C and C++, but they do not provide Many software engineering advantages over manual mem-
adequate support for garbage-collected applications. Thery management, including the elimination of dangling
performance of garbage-collected applications is semsiti Pointer errors and a drastic reduction of memory leaks.
to heap size. Larger heaps reduce the frequency of garbage The performance of garbage-collected applications is
collections, making them run several times faster. How-highly sensitive to heap size. A smaller heap reduces
ever, if the heap is too large to fit in the available RAM, the amount of memory referenced, but requires frequent
garbage collection can trigger thrashing. Existing Java vi garbage collections that hurt performance. A larger heap
tual machines attempt to adapt their application heap sizekeduces the frequency of collections, thus improving per-
to fitin RAM, but suffer performance degradations of up to formance by up to 10x. However, if the heap cannot fit
94% when subjected to bursts of memory pressure. in available RAM, performance drops off suddenly and

We present CRAMM (Cooperative Robust Automatic sharply. This is because garbage collection has a large
Memory Management), a system that solves these probworking set (it touches the entire heap) and thus can trigger
lems. CRAMM consists of two parts: (1) a new virtual catastrophic page swapping that degrades performance and
memory system that collects detailed reference informaincreases collection pauses by orders of magnitude [18].
tion for (2) an analytical model tailored to the underlying Hence, heap size and main memory allocation need to
garbage collection algorithm. The CRAMM virtual mem- be coordinated to achieve good performance. Unfortu-
ory system tracks recent reference behavior with low overnately, current VM systems do not provide sufficient sup-
head. The CRAMM heap sizing model uses this infor- port for this coordination, and thus do not support garbage-
mation to compute a heap size that maximizes throughputollected applications well.
while minimizing paging. We present extensive empirical Choosing the appropriate heap size for a garbage-
results demonstrating CRAMM's ability to maintain high collected application—one that is large enough to maxi-
performance in the face of changing application and sysmize throughput but small enough to avoid paging—is a
tem load. key performance challenge. The ideal heap size is one
. that makes the working set of garbage collection just fit
1 Introduction within the process’s main memory allocation. However, an
The virtual memory (VM) systems in today’s operating a priori best choice is impossible in multiprogrammed en-
systems provide relatively good support for applicationsvironments, since the amount of main memory allocated
written in the widely-used programming languages of theto each process constantly changes. Existing garbage-
80’s and 90’s, such as C and C++. To avoid the highcollected languages either ignore this problem, allowing
overhead of heavy page swapping, it is sufficient for theseonly static heap sizes, or adapt the heap size dynamically
applications to fit their working sets in physical mem- using mechanisms that are only moderately effective. For
ory [16]. VM systems typically manage physical mem- example, Figure 1 shows the effect of dynamic memory
ory memory with an approximation of a global LRU pol- pressure on an industrial-strength Java virtual machine,
icy [12, 13, 15, 16, 22], which works reasonably well for BEA's JRockit [7], running a variant of the SPECjbb2000
legacy applications. benchmark. The solid line depicts program execution when

However, garbage-collected languages are now increaggiven a fixed amount of RAM, while the dashed line shows
ingly prevalent, ranging from general-purpose languagexecution under extra periodic bursts of memory pressure.
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Figure 1: Impact of burgts of memory pressyre on t.he per £ b dander i
formance on the JRockit Java virtual machine, which de-

grades throughput by as much as 94%. Virtual Memory Manager (VM)

This memory pressure dilates overall execution time by aFlgure 2: The CRAMM system. The CRAMM VM system

factor of 220%, and degrades performance by up to 94%. e;fﬂmently gathers detalIeper-procgsseference informa-
Th bl i th dapi hes i h tion, allowing the CRAMM heap size model to choose an
e problem with these adaptive approaches is not t ag)ptimal heap size dynamically.

their adaptivity mechanism is broken, but rather that they
are reactive The only way these systems can detect

whether the heap size is too large is to grow the heap Unge jJikes RVM research Java virtual machine [3]. We
til paging occurs, which leads to unacceptable performancgesent the results of an extensive empirical evaluation of
degradation. CRAMM, including experimental measurements across 20
Contributions: This paper makes the following con- penchmarks and 5 garbage collectors, as well as compar-
tributions. It presents CRAMM (Cooperative Robust Au- json with two industrial Java implementations. These re-
tomatic Memory Management), a system that enablesylts demonstrate CRAMM'’s effectiveness in maintaining
garbage-collected applications fwedict an appropriate  high performance in the face of changes in application be-
heap size, allowing the system to maintain high perfor-havior and system load.
mance while adjusting dynamically to changing memory  Thjs work builds on our previous study that introduced
pressure. an early version of the CRAMM heap sizing model [28].
CRAMM consists of two parts; Figure 2 presents anThat study presented a model that was evaluated only in
overview. The first part is the CRAMM VM system that the context of trace-driven simulations. This paper builds
dynamically gathers thevorking set size (WSS) each  on the previous study significantly. It refines the heap siz-
process, where we define the WSSthe main memory ing model to take into account copying and non-copying
allocation that yields a trivial amount of page swapping regions (required to handle generational collectors); pro
To accomplish this, CRAMM VM maintains separate pagevides more accurate startup adjustment, and more effec-
lists for each process and computesL&U reference his-  tively adapts to dynamic memory allocation by polling the
togram[25, 27] that captures detailed reference informa-ynderlying VM between collections. Furthermore, it is im-
tion while incurring little overhead (around 1%). plemented in a fully functional kernel and JVM, introduces
The second part of CRAMM is its heap sizing model, implementation strategies that make its overhead practi-
which controls application heap size and is independent o€al, has more efficient overhead control mechanisms, and
any particular garbage collection algorithm. The CRAMM presents extensive empirical results.
model correlates the WSS measured by the CRAMM VM |n addition to serving the needs of garbage-collected
to the current heap size. It then uses this correlation to seapplications, the CRAMM VM system is the first sys-
lect a new heap size that is as large as possible (thus maxiem to our knowledge to provide per-process and per-file
mizing throughput) while yielding little or no page faulin  page management while efficiently gathering detailed ref-
behavior. We apply the CRAMM model to five different erence histograms. This information can be used to im-
garbage collection algorithms, demonstrating its gereralplement a wide range of recently proposed memory man-
ity. agement systems including compressed caching [27], adap-
We have implemented the CRAMM VM system in tive LRU policies like EELRU [25], and informed prefetch-
the Linux kernel and the CRAMM heap sizing model in ers [20, 24].



The remainder of this paper is organized as follows. Sectwo generations, a nursery andrature space Because
tion 2 presents an overview of garbage collection algo-nursery collection generally filters out a large volume of
rithms and terminology used in this paper. Section 3 de-objects that die young, mature space grows more slowly—
rives the CRAMM heap sizing model, which relates appli- but when it fills, that triggers &ll heapcollection.
cation working set size to heap size. Section 4 describes Orthogonal to whether a collector is generational is how
the CRAMM VM system, which gathers detailed statistics it reclaims space Mark-sweep (MSkollection marks the
allowing it to compute the precise current process work-reachable objects, and then sweeps across the allocation
ing set size. Section 5 presents empirical results, compategion to reclaim the unmarked ones. MS collection is
ing static and previous adaptive approaches to CRAMM.non-copyingn that it does not move allocated objects. In
Section 6 presents work most closely related to ours, andontrast,copyingcollectors proceed by copying reachable

Section 7 concludes. objects to an empty copy space, updating pointers to re-
. . fer to the new copies. When done, it reclaims the previous
2 GC Behavior and Terminology copy space. We do not consider here collectors that com-

A garbage collector (GCperiodically and automatically ~Pact in place rather than copying to a new region, but our
finds and reclaims heap-allocated objects that a prograrfechniques would work just as well for them. Notice that
can no longer possibly use. We now sketch how, andcollectors that have a number of regions may handle each
when, a GC may do this work, and along the way intro-"egion differently. For example, a given GC may collect
duce GC terminology and concepts critical to understand®ne region by copying, another by MS, and others it may
ing CRAMM. never collect (so-callesnmortal spaces

Garbage collectors operate on the principle that if an Finally, allocation and collection are intertwined. When
object is unreachablevia any chain of pointers starting allocating into an MS-managed region, the allocator may
from roots—pointers found in global/static variables and Use free lists to find available chunks of space. When allo-
on thread stacks—then the program cannot possibly usgating into a copying region, it typically increments a free
the object in the future, and the collector can reclaim andsPace pointer through the initially empty space. For gener-
reuse the object's space. Through a slight abuse of termi@tional collection, the nursery is usually a copy-collecte
nology, reachable objects are often caligd and unreach-  SPace, thus allowing fast allocation. The mature space,
able onesdead Reference counting collectors determine however, may be a copying- or a non-copying-collected re-
(conservatively) that an object is unreachable when thergion, depending on the particular collector.
are no longer any pointers to it. Here, we focus primarily .
ontracing collectors which actually trace through pointer 3 CRAMM Heap Sizing Model
chains from roots, visiting reachable objects. The goal of the CRAMM heap sizing model is to relate

The frequency of collection is indirectly determined by heap sizeandworking set sizeso that, given a current real
theheap sizethe maximum virtual memory space that may memory allocation, we can determine a heap size whose
be consumed by heap-allocated objects. When allocationgorking set size just fits in the allocation. The working
have consumed more than some portion of the heap sizeet size (WSS) for a GCed application is determined al-
(determined by the collection algorithm), collection is in most entirely by what happens during full collections, be-
voked. Thus, the smaller the heap size, the more frequentlgause full collections touch every reachable heap object.
GC occurs, and the more CPU time is spent on collection. Since live and dead objects are generally mixed together,

GC algorithms divide the heap into one or meggions  the working set includes all heap pages used for allocated
A non-generationalGC collects all regions during every objects. It also includes the space needed for copied sur-
collection, triggering collection when some percentage ofvivors of copying regions. Thus, each non-copying region
the entire heap space is filled with allocated objects. A non<ontributes its size to the working set, while each copying
generational GC may have only one region. In contrastyegion adds its sizelus the volume of copied survivors,
generationalGCs partition the regions into groups, where which can be as much as the size of the copying region in
each group of regions, calledyaneration contains objects the worst case.
of a similar age. Most commonly, each group consists of Several properties of GCed applications are impor-
a single region. When some percentage of the space s&nt here. First, given adequate real memory, perfor-
aside for a generation has been filled, that generation, anchance varies with heap size. For example, Figure 3
all younger ones, are collected. Additionally, live obgect depicts the effect of different amounts of memory (the
that survive the collection are generajtyomotedto the  size of the garbage-collected heap) on performance. This
next older generation. New objects are typically allocatedgraph is for a particular benchmark and garbage collector
into anurseryregion. This region is usually small, and thus (the SPECjvm98 benchmaijkavac with a mark-sweep
is collected frequently, but quickly (because it is small). garbage collector), but it is typical. On the left-hand side
The generational configurations that we consider here haverhere the heap is barely large enough to fit the applica-
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5 ™ 100 150 200 o for the heap is exactly the volume of free pages the VM
Heap Size (MB) system is willing to grant us (call th&ree). We wish to set
our heap size so that our worst case heap WSS during the
Figure 3: The effect of heap size on performance and workfirst full collection will not exceedFree. But the worst heap
ing set size (the number of pages needed to run with at mosi/SS is exactly the heap size, so we ldetb the minimum

a 5% slowdown from paging). of Freeand the user-requested initial heap size.

Tracking the parameters: To determine the heap uti-
tion, execution time is high. As the heap size increaseslization u, we simply calculate it at the end of each collec-
execution time sharply drops, finally running almost 2509%tion, and assume that the near future will be similar. Es-
faster. This speedup occurs because a larger heap redudé®ating ACSis more involved. We track the maximum
the number of collections, thus reducing GC overhead. Th&aluefor CSthat we have seen so fanaxCSand we also
execution time graph has a@xshape, with vertical and hor-  track the maximunincrementwe have seen t€S maxC-
izontal asymptotes. Sinc If, after a full collection,CSexceedsnaxCS$we as-

However, thavorking set size-here given as the amount SumMeCSis increasing and estimasCS= maxCSing2,
of memory required to run with at most 5% elapsed timei-€., that it will grow by 1/2 of the largeshcrement Oth-
added for paging—has a linear shape. The heap size deteffWise we estimatACSasmaxCS-CS i.e., thatCSfor
mines the Working set size, as previous|y described. Oufhe next full collection will equatnaXCSAfter Ca'CUlating
earlier work explores this in more detail [28]. The key ob- ACS we decay maxCSmultiplying it by 0.98 (a conser-
servation is that working set size is very nearly linear inVvative policy to maintain stablenaxC$, and maxCSing
terms of heap size. multiplying it by 0.5 (a more rapidly adjusting policy so

that maxCSlInadecays away quickly oncmaxCSreaches

3.1 GC Working Set Size and Heap Sizing M odel its stable state).

We define heap sizé], as the maximum amount of space

allowed to contain heap objects (and allocation structure?. Har(;dlmg:;tnursery (i[(;:lectlr]orwls: :’ ecautfé;ur;sery C(lelec-
such as free lists) at one time. If non-copy-collected re- 'On,s o no prgcess € whole heap, 'va ue un .er-
estimates survival from future full collections. So, if the

ions useN pages and copy-collected regions allocate ob- A
g Pag Py g nursery size is less than 50% of allocable space, we do not

jects intoC pages, theid = N+ 2 x C. We must reserve dateH. For | . MABESbh |
up toC pages into which to copy survivors from the orig- updateri. or larger hurseries, we estim oy mu-
tiplying the size of uncollected copying space timesd,

inal C space, and the collector needs both copies until it . . L
is done. The total WSS for the heap during full collection WNE€T€0 IS thesurvival rateof the nursery collection, i.e.,
is determined by the pages used for copied survivo&s, CS/v, wherev is the size of the nursery.
WSS= N-+C+ CS Thus, heapWwSSvaries fromN +C to This model is a straightforward generalization of our
N+2xC. previous one [28], taking into account copying and non-
As a program runs, its usage of non-copying and copy-copying regions and modeling startup effects, and elimi-
ing space may vary, but it is reasonable to assume that theates the overhead (8% - 23%) caused by inaccurate startup
balance usually does not change rapidly from one full col-adjustment in our previous model. TrackingméxCSand
lection to the next. We call the ratio of allocable spacemaxCSIin@lso helps avoid paging. We periodically request
(N +C) to heap sizeN + 2 x C) the heap utilization u. the currenfreevalue on allocation slow path, when the al-
It varies from 50% forN = 0 to 100% forC = 0. Given locator tries to request a new chunk of memory from the
an estimate ofi, we can determin® 4+ C fromH, butto VM (128KB for MS and 1MB for others). OncEreeis
determineWS$ we also need to estima@S Fortunately, less tham€maxC$ we trigger an immediate collection and
CSis a property of the application (volume lbfe objects  resize the heap. This new polling mechanism allows us to
in copy-collected regions), not of the heap size. As withadapt to bursts of memory pressure more quickly and ef-
u, we can reasonably assume tR& does not change too fectively than our previous model.



4 VM System Design and Implementation heap size will exhibit a different reference pattern.

We now present the CRAMM VM system. We first de- Last, the collector periodically polls the VM for an es-
scribe why standard VM systems are insufficient for pre-timate of thefree memory-the main memory space that
dictively adaptive heap sizing. We then describe the struccould be allocated to the process without causing others
ture of the CRAMM VM system, followed by detailed dis- t© thrash. If this value is unexpectedly low, then memory
cussions of how it calculates working set sizes and how ifPréssure has suddenly increased. Either some other sys-
controls histogram collection overhead. tem activity is aggressively consuming memory (e.g. the

Given the heap sizing model presented in Section 3.1, th&tartup of a new process), or this process has more live data
underlying VM system must provide to a GC-based pro_(increasedweap utilization, and thus is using more mem-
cess both its working set size (WSS) and its main memonP"Y than expected. The collector responds by pre-emptively
allocation? thus allowing the GC to choose a proper heapcellecting the heap and selecting a new heap size.
s_ize. Unfortunately, we cannot e_asily thain th?s informa-4.1 CRAMM VM Structure
tion from standard VM systems, including the Linux VM.

Linux uses a global page replacement policy that man-Th® CRAMM VM allocates a data structure, called
ages each physical page within a single data structurelfor al®Mi nf o, for eachaddress spacni node for files or
processes and files. Linux thus has oafdinal informa- ~ @n mmst r uct for processes). This structure comprises a
tion about all pages, giving each page a ranking among thlist of pages, an LRU reference histogram, and some addi-
total pool of pages. It has reardinalinformation about the  tional control fields.
reference rates, nor any separation of pages according to Figure 4 shows the page list structure of a process. The
process or file. Consequently, it cannot track iR ref- ~ CRAMM VM manages eacladdress spacéhe space of
erence histogram-the distribution of memory references @ file or a process) much like the Linux VM manages its
to pages managed by an LRU queue—which is needed tglobal queue. For the in-memory pages of each address
determine the WSS for each process. Furthermore, it carSPace, it maintains aegmented queuSEGQ) structure
not predict how much it could reduce the allocations of files[5], where theactive listcontains the more recently used
and other processes without inducing heavy page faultingPages and thimactive listcontains those less recently used.

It therefore cannot wisely choose a main memory alloca-¥When a new page is faulted into memory, the VM places it
tion to offer to a GC-based process. Finally, even if it choseat the head of the active list. If the addition of this page
to reduce the allocations for some files or other processegauses the active list to be too large, it moves pages from
global page replacement cannot guarantee that it will rethe tail of the active list to the head of the inactive list.
place the pages of those processes first. When the process exceeds its main memory allocation, the

The CRAMM VM system addresses these limitations. VM removes a page from the tail of the inactive list and
Figure 2 gives an overview of the CRAMM VM structure evicts it to disk. This page is then inserted at the head of
and interface. For each file and process, it keeps separagethird segment, thevicted list When an address space’s
page lists and an LRU reference histogram. It also trackdVSS exceeds its main memory allocation, the evicted list's
the mean cost of a major page fault (one that requires diskistogram data allows the VM to project how large the al-
1/0) so that, along with the histogram and a desired maxilocation must be to capture the working set.
mum fault rate, it can compute the WSS of a process. The active list is managed using a CLOCK algorithm.

Its ability to compute the WSS of each file and processThe inactive list is ordered by each page’s time of removal
allows the CRAMM VM to calculate new allocations to from the active list. The relative sizes of these two lists
each without causing thrashing by assigning too small aris controlled by an adaptive mechanism described in Sec-
allocation. When an allocation is reduced, the separatéion 4.3. Like a traditional 8cQ, all inactive pages have
page lists allow the VM to prefer reclaiming pages from their access permissions removed, forcing any reference to
those files and processes that are consuming more than thein inactive page to cause a minor page fault. When such a
allocation. page fault occurs, the VM restores the page’s permissions

A garbage collector communicates with the CRAMM and promotes it into the active list, and then updates the ad-
VM through system calls. First, the collector registers it- dress space’s histogram. The insertion of a new page into
self as a cooperative process with the CRAMM VM at ini- the active list may force other pages out of the active list.
tialization time. The VM responds with the current amount The VM manages the evicted list similarly; the only dif-
of free memory, allowing the collector to pick a reason- ference is that a reference to an evicted page triggers disk
able initial heap size. Second, after each heap collectiongctivity.
the collector requests a WSS estimate and a main memory Replacement algorithm: The CRAMM VM places
allocation from the VM. The collector then uses this infor- eachrmem.i nf o structure into one of two lists: then-
mation to select a new heap size. If it changes its heap sizeysed listfor the address spaces of files for which there are
it calls on the VM to clear its old histogram, since the new no open file descriptors, and thermal listfor all other ad-
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dress spaces. When the VM must replace a page, it prefeswapping. In our experiments, we chase 5%.
entially selects aem.i nf o from the unused listand then | order to calculate the WSS, the VM maintains an LRU
reclaims a page from the tail of that inactive list. If the un- reference histogram [25' 27] for each process. For each
used list is empty, the VM selectsnem.i nf o inaround  reference to a page at positionf the process’s page lists,
robin manner from the normal list, and then selects a paggnhe vm incrementsh(i].3 This histogram allows the VM
from the tail of its inactive list. to calculate the number of page faults that would occur
As Section 5.2 shows, this eviction algorithm is less ef-for each possible memory allocation. The VM also mon-
fective than the standard Linux VM replacement algorithm.jtors the mean cost of a major fauthéjfc) and the time
However, the CRAMM VM structure can support standard T that each process has spent on the CPU. To calculate
replacement policies and algorithms while also presentthe WSS, it scans the histogram backward to find the al-
ing the possibility of new policies that control per-addres |ocation at which the number of page faults is just below
space main memory allocation explicitly. (T x t)/majfc
Available Memory: A garbage collector will periodi- — page igt position: When a page fault occurs, the ref-
cally request that the CRAMM VM report thavailable  orenceq page is found within the page lists using a hash
memory—the total main memory space that could be allo- oy | order to maintain the histograms, the CRAMM
cated to the process. Specifically, the CRAMM VM reportsy,\; yyst determine the position of that page within the
the e}vanaple memoryajailablg as the sum of the pro- ;.6 jists. Because a linear traversal of the lists would be
cess’s resident set sizes), the free main memonyiee),  jnefficient, the VM attaches an AVL tree to each page list.
and the total r.1umber of pages found in the unuseduist ( Figure 4 shows the structure that the VM uses to calcu-
useq. There is also space reserved by the éserved  |5t0 nage list positions in logarithmic time. Specifically,
to maintain a minimal pool of free pages that must be subyery |eaf node in the AVL tree points to a linked list of
tracted from this sum: up tok pages, wher& depends on the list into which the
available= rss-+ free+ unused- reserved node points. Every non-leaf node is annotated with the total
_ ) number of pages in its subtree; additionally, each non-leaf
This value is useful to the collector because the CRAMM o ge s assigned a capacity that is krealues of its chil-
VM's per-address-space structure allows it to allocats thi yren, The VM puts newly added pages into a buffer, and
much space to a process without causing any page SWafkserts this buffer into the AVL tree as a leaf node when
ping. Standard VM systems that use global memory manthat puffer points tck pages. Whenever a non-leaf node
agement (e.g., Linux) cannot identify the unused file Spacgjrops to half full, the VM merges its children and adjusts
or preclude the possibility of page swapping as memory ishe tree shape accordingly.
re-allocated to a process. When a page is referenced, the VM first searches lin-
4.2 Working Set Size Calculation early to find the page’s position in the containing leaf node.
The CRAMM VM tracks the current working set size of It then walks up the AVL tree, summing the pages in leaf
each process. Recall that the WSStHie smallest main  nodes that point to earlier portions of the page list. Thus,
memory allocation for which page faulting degrades pro- given thatkis constant and small, determining a page’s list
cess throughput by less thafbt If t = 0, space may position is performed in time proportional to the height of
be wasted by caching pages that receive very little usethe AVL tree.
Whent is small but non-zero, the WSS may be substan- Because the CRAMM VM does not track references to
tially smaller than fot = 0, yet still yield only trivial page pages in the active list, one leaf node contains pointers to



all pages in the active list, and for this leaf nokle; «. For The VM sets a target faninor fault overheagexpressed
leaf nodes that point to inactive and evicted pages,64  as a percentage increase in running time for processes, and
— a value chosen to balance the work of linear search andynamically adjusts the inactive list size according t@ thi
tree traversal. The AVL trees have low space overheadtarget. For each process, the VM tracks its CPU tife
Suppose an application h&s 4KB pages, and our AVL and a count of its minor page faults It also maintains
node structure is 24 bytes long. Here, the worst case space system-wide minor fault coshinfc using the same ap-
overhead (all nodes half full, and the total number of nodegproach as wittmajfc. It uses these values to calculate the
is twice the number of leaf nodes) is: minor fault overhead aén x minfc)/T. It performs this
calculation periodically, after which it resets bathandn.
((é\'—4 X 2% 2) x 24byteg Given a target of 1% and a constant threshold for deviation
< 0.037% )
(N x 4096bytes from that target of 5%, one of three cases may apply:

On average, we observe that the active list contains a o | the overhead exceeds5Pb. the VM decreases the
large portion (more than half) of the pages used by a pro- inactive list size.

cess, and thus the overhead is even lower.
LRU histogram: Keeping one histogram entry forevery e If the overhead is less than3%, it increases the in-

page list position would incur a large space overhead. In- active list size.

stead, the CRAMM VM groups positions intons. In our

implementation, every bin corresponds to 64 pages (256

KB given the page size of 4 KB). This granularity is fine

enough to provide a sufficiently accurate WSS measure-

ment while reducing the space overhead substantially. . . .
g P Y This simple adaptive mechanism, set to a 1% overhead

Furthermore, CRAMM dynamically allocates space for 0 e
the histogram in chunks of 512 bytes. Given that a hiS_target and a % deviation threshold, successfully keeps

togram entry is 8 bytes in size, one chunk corresponds t('%he _overhead low while y_ielding sufficient histogram infor-
histogram entries for 16 MB of pages. Figure 4 showsmat.Ion fOTWSS calculauorys. ] .
the data structure for a histogram. We see that, when a Size ad| ustmgnt cglculqtlo'ns.' CRAMM assigns each
process or file uses less than 64 pages (256 KB), it usel0cess aarget |r_1act|ye s_|z;e|n_|t|_ally 0. Wher_1 CRA.MM
only bing. This approach optimizes space for the commona_d]us'[S the inactive list size, it is really _settmg th.ISQE.H
case of small processes and files. Any process or file that 2o A_ssume_ that_a process H&mpqges in the active “St,
requires more than 256 KB but less than 16MB memoryanda n t.he macuve list. Depending on thg overhead's
uses thdevel 1 histogram. Larger ones use tleel 2 his- relationship to its threshold, the new target will be:
togram. The worst-case histogram space overhead occurs
when a process uses exactly 65 pages. Here, the histogram
will need about 0.2% of the memory consumed by the pro- e DecreaseP, — maxmin(Pa,P)/8,8)
cess. In common cases, it is about 8 bytes per 64 pages,
which is less than 0.004%. o Refill: B +maxmin(min(Pa, R )/16,256),8)
Major fault cost: Calculating WSS requires tracking

the mean cost of a major page fault. The CRAMM VM i il d
keeps a single, system-wide estimatajfc of this cost. we make the adjustments small if either list is small, thus

When the VM initiates a swap-in operation, it marks the not changing the target too drastically. These formulas als

page with a time-stamp. After the read completes, the VMENSUre that at least some constant change is applied to the

calculates the time used to load the page. This new time i&r9et, ensuring a change that will have some effect. We
then used to updataajfc also put an upper bound on the refilling adjustment to pre-

vent flushing too many pages into the inactive list at a time.
4.3 Controlling Histogram Collection Over head Finally, we decrease the target inactive list size more ag-
Because the CRAMM VM updates a histogram entry at ev-gressively than we increase it because low overhead is a
ery reference to an inactive page, the size of the inacste li more critical and sensitive goal than accurate histogram in
determines the overhead of histogram collection. If the in-formation. We also refill more aggressively than we in-
active list is too large, then too much time will be spent crease because an absence of minor faults is a strong indi-
handling minor page faults and updating histogram entriescation of an inadequate inactive list size.
If the inactive list is too small, then the histogram will pro Whenever a page is added to the active list, the VM
vide too little information to calculate an accurate WSS. checks the current inactive list size. If it is less thanats t
Thus, we want the inactive list to be as large as possiblget, then the VM moves several pages from the active list to
without inducing too much overhead. the inactive list (8 pages in our implementation). When an

e |f there are no minor faults during this period, and if
the inactive list is not full, then it moves pages from
the active to the inactive listéfilling the inactive list).

e IncreaseP + maxmin(Pa,P)/328)

By choosing the smaller d%x andP in these equations,



adjustment triggers refilling, the VM immediately forces no rected the system to compile methods according to the log
more than 256 pages into the inactive list to match its newfrom the run with the best performance. This is called the
target. As this adjustment only resets the target size andeplaysystem. It is deterministic and highly similar to typ-
usually does not move pages immediately, the algorithm iscal adaptive system runs.
largely insensitive to the values of these parameters. Collectors: We evaluate five collectors from the MMTk
Adaptivity triggers: Inthe CRAMM VM, there aretwo  memory management toolkit [9] in Jikes RVM: MS (mark-
events that can trigger an inactive list size adjustmené Thsweep), GenMS (generational mark-sweep), CopyMS
first, adjustinterval, is based on running time, and the sec- (copying mark-sweep), SS (semi-space), and GenCopy
ond,adjustcount is based on the number of minor faults. (generational copying). All of these collectors have a sep-
Every new process has igljustinterval initialized toa  arate non-copying region for large objects (2KB or more),
default value %sec). Whenever a process is scheduled, if collected with the Treadmill algorithm [6]. They also use
its running time since the last adjustment exceedsudts  separate non-copying regions for meta-data and immortal
justinterval value, then the VM adjusts the inactive list objects. We now describe thather regions each collec-
size. tor uses for ordinary small objects. MS is non-generational
The adjustcount variable is initialized to be with a single MS region. GenMS is generational with a
(adjustinterval x 2%)/minfc  If a process suffers this copying nursery and MS mature space. CopyMS is non-
number of minor faults beforadjustinterval CPU time  generational with two regions, both collected at every GC.
has passed, then its overhead is well beyond the acceptabdew objects go into a copy region, while copy survivors
level. At each minor fault, the VM checks whether the go into an MS region. SS is non-generational with a sin-
number of minor faults since the last adjustment exceedgle copying region. GenCopy is generational with copy-

adjustcount If so, it forces an adjustment. ing nursery and mature space. Both generational collectors
_ _ (GenMS and GenCopy) use Appel-style nursery sizing [4]
5 Experimental Evaluation (starts large and shrinks as mature space grows).

We now evaluate our VM implementation and heap size Benchmarks: For evaluating JVM performance, we
manager. We first compare the performance of thd@" all benchmarks from the SPECjvm98 suite (standard

CRAMM VM with the original Linux VM. We then add ~&nd widely used), plus those benchmarks from the Da-
the heap size manager to several collectors in Jikes RvMCaPO suite [10] (an emerging standard for JVM GC evalua-
and evaluate their performance under both static and dytion) thatrun under Jikes RVM, pluspsi xql (a publicly

namic real memory allocations. We also compare thenfvVailable XML database program) ams$eudoj bb (a
with the JRockit [7] and HotSpot [19] JVMs under simi- variant of the standard, often-used SPECjbb server bench-

we run two concurrent instances of Mark with a fixed workload (140,000 transactions) instead
Wf fixed time limit). For evaluating general VM perfor-
mance, we used the standard SPEC2000 suite.

Presented: Many results are similar, so to save space
5.1 Methodology Overview we present results only from some representative collec-
We perform all measurements on a 1.70GHz Pentium 4ors and benchmarks. For collectors, we chose SS, MS,
Linux machine with 512MB of RAM and 512MB of lo- and GenMS to cover copying, non-copying, and genera-
cal swap space. The processor has 12KB | and 8KB D Llional variants. For benchmarks, we chgsevac, j ack,
caches and a 256KB unified L2 cache. We installed botipseudoj bb, i psi xql ,j yt hon, andpnd.
the “stock” Linux kernel (version 2.4.20) and our CRAMM
kernel. We run each of our experiments six times in single-‘r"2 VM Performance
user mode, and report the mean of the last five runs. IfFor the CRAMM VM to be practical, its baseline perfor-
order to simulate memory pressure, we use a backgrounthance (i.e., while collecting useful histogram/working se
process to pin a certain volume of pages in memory usingsize information) must be competitive when physical RAM
m ock. is plentiful. We compare the performance of the CRAMM

Application platform: We used Jikes RVM v2.4.1 [3] VM to that of the stock Linux kernel across our entire
built for Linux x86 as our Java platform. We optimized the benchmark suité. For each benchmark, we use the input
system images to the highest optimization level to avoidthat makes it runs longer than 60 seconds.
run-time compilation of those components. Jikes RVM Figure 5 summarizes the results, which are geometric
uses amdaptivecompilation system, which invokes op- means across all benchmarks: SPEC2000int, SPEC2000fp,
timization based on time-driven sampling. This makes ex-and all the Java benchmarks (SPECjvm98, DaCapo, pseu-
ecutions non-deterministic. In order to get comparable dedojbb, and ipsixgl) with five different garbage collectors.
terministic executions, we took compilation logs from 7 While the inactive list size adjustment mechanism effec-
runs of each benchmark using the adaptive system, and diively keeps the cost of collecting histogram data in the

lar conditions. Finally,
our adaptive collectors under memory pressure to see ho
they interact with each other.



CRAMM VM Overhead side of each curve, the non-adaptive collector runs at a heap
4 size that does not consume the entire allocation, thus under
utilizing available memory, collecting too frequently and
T i inducing high GC overhead. The adaptive collector grows
the heap size to reduce the number of collections without
incurring paging. At the smallest requested heap sizes, thi
adjustment reduces execution time by as much as 85%.
At slightly larger requested heap sizes, the non-adaptive
collector performs fewer collections, better utilizingady
able memory. One can see that there is an ideal heap size
7 ) for the given benchmark and allocation. At that heap size,
e SPECHKlp e e e aveents o the non-adaptive collector pfarforms_ well—but the adap-
tive collector often matches it, and is never much worse.

. ) . . The maximum slowdown we observed is 11% across all
Figure 5: Virtual memory overhead (% increase in execu-

LS . . . c}he benchmarks. Our working set size calculation uses a
tion time) without paging, across all benchmark suites an . .

page fault threshold df= 5%, so we are allowing a triv-
garbage collectors.

ial amount of paging—while reducing the working set size
substantially.

desired range (e.g., 0.59% for SPEC2Kint and 1.02% for Once the requested heap size goes slightly beyond the
SPEC2Kfp), the slowdown is generally about 1-2.5%. Welideal, non-adaptive collector performance drops dramati-
believe this overhead is caused by CRAMM polluting the cally. The working set size is just slightly too large for
cache when handling minor faults as it processes page list§'e allocation, which induces enough paging to slow exe-
and AVL trees. This, in turn, leads to extra cache missegution by as much as a factor of 5 to 10. In contrast, our
for the application. We verified that at the target minorfaul @daptive collector shrinks the heap so that the allocation
overhead, CRAMM incurs enough minor faults to calculate completely captures the working set size. By performing
the working set size accurately with respect to our 5% pagélightly more frequent collections, the adaptive collecto
fault threshold. consumes a modest amount of CPU time to avoid a lot of
CRAMM's performance is generally somewhat poorer Paging, thus reducing elapsed time by as much as 90%.
on the Java benchmarks, where it must spend more tim¥/hen the requested heap size becomes even larger, the
handling minor faults caused by the dramatic working setP€rformance of our adaptive collector remains the same.
changes between the mutator and collector phases of GCédowever, the execution time of the non-adaptive collector
applications. However, the fault handling overhead resiain decreases gradually. This is because it does fewer collec-
in our target range. Overall, CRAMM collects the neces-1i0ns, and itis collections that cause most of the paging.
sary information at very low overhead in most cases, and its Interestingly, when we disable adaptivity, the CRAMM
performance is competitive with that of the stock kernel. VM exhibits worse paging performance than the stock
Linux VM. LRU-based eviction algorithm turns out to be a
poor fit for garbage collection’s memory reference behav-
To test our adaptive mechanism, we run the benchmark®r. Collectors typically exhibit loop-like behavior when
over a range of requested heap sizes with a fixed memoriracing live objects, and LRU is notoriously bad in han-
allocation. We select memory allocations that reveal thedling large loops. The Linux VM instead uses an eviction
effects of large heaps in small allocations and small heapalgorithm based on a combination of CLOCK and a linear
in large allocations. In particular, we try to evaluate the scan over the program’'s address space, which happens to
ability of our mechanism to grow and shrink the heap. Wework better in this case.
run the non-adaptive collectors (which simply use the re- ) )
quested heap size) on both the stock and CRAMM ker->4 Dynamic Memory Allocation
nels, and the adaptive collectors on the CRAMM kernel, The results given so far show that our adaptive mecha-
and compare performance. nism selects a good heap size when presented with an
Figure 6 and Figure 7 show execution time for bench-unchanging memory allocation. We now examine how
marks using MS and GenMS collectors, respectively, withCRAMM performs when the memory allocation changes
a static memory allocation. For almost every combinationdynamically. To simulate dynamic memory pressure, we
of benchmark and requested heap size, our adaptive colsse a background process that repeatedly consumes and re-
lector chooses a heap size that is nearly optimal. It eithefeases memory. Specifically, it consists of an infinite loop,
reduces total execution time dramatically, or performs atin which each iteration first sleeps for 25 seconds, then
least as well as the non-adaptive collector. At the leftmostmap’s 50MB memory,m ock’s it for 50 seconds, and

35 @ Additional Overhead
Histogram Collection

% Overhead
~

5.3 Static Memory Allocation
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Figure 6: Static Memory Allocation: MarkSweep
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Figure 7: Static Memory Allocation: GenMS

then unlocks and unmaps the memory. We also modifyber of major faults (MF) for each collector. We compare
how we invoke benchmarks so that they run long enoughthem against running the benchmark at the requested heap
to measure: we giveseudoj bb a large transaction num- size with sufficient memory. The last column shows adap-
ber, and iterat¢ avac 20 times. tive execution time relative to non-adaptive. We see that,
Table 1 summarizes the performance of both the nor]]‘oreach collector, the adaptive mechanism adjusts the heap

. . . . size in response to memory pressure, nearly eliminatin
adaptive and adaptive collectors under this dynamic mem- P yp y 9

: . gaging. The adaptive collectors show high CPU utilization

ory pressure. The first column gives the benchmarks an . L

L - .~ and dramatically reduced execution times.
their initial memory allocation. The second column gives
the collectors and their requested heap sizes respectively Figure 8 illustrates how our adaptive collectors change
We set the requested heap size so that the benchmark withe heap size while runningseudoj bb under dynamic
run gracefully in the initial memory allocation. We present memory pressure. The graphs in the first row demonstrate
the total elapsed time (T), CPU utilization (cpu), and num-how available memory changes over time, and shows the



Benchmark Collector Enough Memory Adaptive Collector Non-Adaptive Collector | Adaptive
(Memory) (Heap Size) T(sec) MF T(sec) cpu MF | T(sec) cpu MF Yes/No
pseudojbb SS (160M) | 297.35 1136 339.91 99% 1451 501.62 65% 24382 0.678
(160M) MS (120M) | 336.17 1136| 386.88 98% 1179 928.49 36% 47941 0.417
GenMS  (120M)| 296.67 1136| 302.53 98% 1613 720.11 48% 39944 0.420

javac SS (150M) | 237.51 1129| 259.35 94% 1596 455.38 68% 24047 0.569
(140M) MS (90M) | 261.63 1129| 288.09 95% 1789 555.92 47% 25954 0.518
GenMS  (90M) | 249.02 1129| 263.69 95% 2073 541.87 50% 33712 0.487

Table 1: Dynamic Memory Allocation: Performance of Adaptixs. Non-Adaptive Collectors
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corresponding heap size chosen by each adaptive collector.

We see that as available memory drops, the adaptive col-
lectors quickly shrink the heap to avoid paging. However,
if our adaptive collectors do not periodically poll for cur-
rent available memory and collect before the heap is filled
up, the CPU utilization falls below 80% and can be as low
as 53%. Likewise, the adaptive collectors grow the heap
when there is more available memory. One can also see
that the difference between the maximum and minimum
heap size is approximately the amount of memory change

# of Transactions finished (thousands)

divided by heap utilizatio, consistent with our working
set size model presented in Section 3.1.

We also compare the throughput of the adaptive and non-
adaptive collectors (the second row in Figure 8), by printin Figure 9: Throughput under dynamic memory pressure,
out the number of transactions finished as time elapses forersus JRockit and HotSpot.
pseudoj bb. These curves show that memory pressure
has much less impact on throughput when running undememory. The non-adaptive collectors experience signifi-
our adaptive collectors. It causes only a small disturbanc€ant paging slowdown when under memory pressure.

and only for a short period of time. The total execution
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As previously mentioned, JRockit and HotSpot do not

time of our adaptive collectors is a little longer than that o adjust heap size well in response to changing memory al-
the base case, simply because they run at a much small&cation. Figure 9 compares the throughput of our adap-
heap size (and thus collect more often) when there is lestive collectors with that of JRockit and HotSpot. We care-
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Figure 10: Running Two Instances of Adaptive Collectors.

fully choose the initial memory allocation so that the back-6.1 Virtual Memory

ground process imposes the same amount of relative memrpe CRAMM VM computesstack distanceswhich were
ory pressure as for our adaptive collectors. However, beingyiginally designed for trace analysis. Mattson et al.dntr
an experimental platform, Jikes RVM's compiler does notqyced a one-pass algorithm, based on stack distances, that
produce as efficient code as these commercial JVMs. Wenalyzes a reference trace and produces cache misses for
thus normalize the time for each of them to the total ex-c5ches of any size [22]. This algorithm was later adapted
ecution time that each JVM takes to run when given am-yy Kim and Hsu to handle highly-associative caches [21].
ple physical memory. The results show that both JRockityowever, these algorithms compute a stack distance in lin-
and HotSpot experience a large relative performance 0S4y time, making them too slow to use inside a kernel. Sub-
The flat regions on their throughput curves indicate thatsequent work on analyzing reference traces used more ad-
they make barely any progress when available memory sudzanced dictionary data structures [1, 8, 17, 23, 26]. These
denly shrinks to less than their working set. Meanwhile, 5gorithms calculate a stack distance in logarithmic time,
our adaptive collector changes the heap size to fit in availyt o not maintain underlying referenced blocks in order.
able memory, maintaining high performance. This order is unnecessary for trace processing but crucial
Finally, we examine how our adaptive collectors inter- for page eviction decisions. The CRAMM VM maintains
act with each other. We start two instances using adappages in a list that preserves potential eviction order, and
tive collectors with a certain memory allocation (220MB), uses a separate AVL tree to calculate a stack distance in
and let them adjust their heap sizes independently. We eXogarithmic time.
plore several combinations of collector and benchmark: the zhou et al. present a VM system that also tracks LRU
same collector and benchmark, the same collector and difreference curves inside the kernel [29]. They use Kim and
ferent benchmarks, and different collectors with difféaren Hsu’s linear-time algorithm to maintain LRU order and cal-
benchmarks. The experiments show that, for all these comeulate stack distances. To achieve reasonable efficiency,
binations, our adaptive collectors keep CPU utilization atthis algorithm requires the use of large group sizes (e.g.,
least 91%. Figure 10 shows the amount of available mem1024 pages) that significantly degrade accuracy. They also
ory observed by each collector and their adapted heap sizgse a static division between the active and inactive lists,
over time. We see that, after bouncing around a little, ouryielding an overhead of 7 to 10%. The CRAMM VM
adaptive collectors tend to converge to heap sizes that giveomputes the stack distance in logarithmic time, and can
each job a fair share of available memory, even thoughrack reference histograms at arbitrary granularitiest- Fu
each works independently. The curves of GenMS in thethermore, its inactive list size adjustment algorithmato
third graph show how filtering out small nursery collections it to collect information accurately from the tail of miss

helps to stabilize heap size. This experiment still focusegurves while limiting reference histogram overhead to 1%.
on how each JVM adapts to dynamic memory allocation.

Although our mechanism effectively prevents each of them
from paging, the memory allocation to each JVM may beResearchers have proposed a number of heap sizing ap-
unfair. We leave to future work how best to divide memory proaches for garbage collection; Table 2 provides a sum-

.2 Garbage Coallection

among multiple competing JVMs. mary. The closest work to CRAMM is by Alonso and Ap-
pel, who also exploit VM system information to adjust the
6 Related Work heap size [2]. Their collector periodically queries the VM

for the current amount of available memory and adjusts the
We now discuss the work most closely related to CRAMM, heap size in response. CRAMM differs from this work
first discussing work related to the CRAMM VM and then in several key respects. While their approach shrinks the
addressing GC-based approaches to sizing the heap. heap when memory pressure is high, it does not expand



Grows | Shrinks Static Dynamic | Collector | NeedsOS

Heap Heap Allocation | Allocation | Neutral Support Respondsto
Alonso et al.[2] V4 Vv V4 V4 memory allocation
Brecht et al.[11] v N4 pre-defined rules
Cooper et al.[14] N Vv user supplied target
BC [18] v v v v page swapping
JRockit [7] v v N4 N4 throughput or pause time
HotSpot [19] N N Vv throughput and pause timg
MMTK [9] V4 V4 Vv Vv live ratio and GC load
CRAMM/AHS[28] v v N4 v/ Vv vV memory allocation

Table 2: A comparison of approaches to dynamic heap sizing.
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Notes

1We useVM to denotevirtual memorythroughout this paper.

2Themain memory allocatiois not the same as thresident set size
The latter is the amount of main memory currently consumeddpeess,
while the former is the amount of main memory that the VM syste
willing to let the process consume before evicting its pages

SNotice that we refer to the histogram aslaRU reference histogram
but that our page lists are not in true LRU order, and so thedratm
is really aSegQ reference histogranflso, note that only references to
the inactive and evicted lists are applicable here, sinfeeerces to active
pages occur without kernel intervention.

“We could not compile and run some SPEC2000 Fortran programs, s
we omit some of the FP benchmarks.



