
Sample Mid-Term Exam 2

CS 3520/6520, Fall 2018

November 6

Name:

Instructions: You have eighty minutes to complete this open-book, open-note, closed-interpreter exam.
Please write all answers in the provided space, plus the back of the exam if necessary.
Note on actual exam: The exam will refer to the lambda-k.rkt interpreter. If you need the interpreter
for reference to answer the questions, please bring a copy (paper or electronic) with you.

1) [20 pts] Which of the following produce different results in a eager language and a lazy language?
Both produce the same result if they both produce the same number or they both produce a procedure
(even if the procedure doesn’t behave exactly the same when applied), but they can differ in errors
reported.

a) {{lambda {y} 12} {1 2}}

b) {lambda {x} {{lambda {y} 12} {1 2}}}

c) {+ 1 {lambda {y} 12}}

d) {+ 1 {{lambda {x} {+ 1 13}} {+ 1 {lambda {z} 12}}}}

e) {+ 1 {{lambda {x} {+ x 13}} {+ 1 {lambda {z} 12}}}}

1



2) [20 pts] Suppose a garbage-collected interepreter uses the following three kinds of records:

– Tag 1: a record containing two pointers

– Tag 2: a record containing one pointer and one integer

– Tag 3: a record containing one integer

The interpreter has one register, which always contains a pointer, and a memory pool of size 22. The
allocator/collector is a two-space copying collector, so each space is of size 11. Records are allocated
consecutively in to-space, starting from the first memory location, 0.

The following is a snapshot of memory just before a collection where all memory has been allocated:

– Register: 8

– To space: 1 3 8 3 0 2 3 7 2 0 8

What are the values in the register and the new to-space (which is also addressed starting from 0) after
collection? Assume that unallocated memory in to-space contains 0.

– Register:

– To space:

2



3) [60 pts] Given the following expression:

{{lambda {x} {x x}}

{lambda {y} {+ 5 7}}}

Describe a trace of the evalaution in terms of arguments to interp and continue functions for every
call of each in the lambda-k.rkt interpreter. (There will be 9 calls to interp and 7 calls to continue.)
The interp function takes three arguments — an expression, an environment, and a continuation —
so show all three for each interp call. The continue function takes two arguments — a continuation
and a value — so show both for each continue call. Represent continuations using records.

Use the extra exam page for additional space, and use the following abbreviations to save time:

X0 = the whole expression
X1 = {lambda {x} {x x}}
X2 = {x x}
X3 = {lambda {y} {+ 5 7}}
X4 = {+ 5 7}

3



Answers

1) a and d.

2) Register: 0, To space: 2 3 8 1 6 0 3 0 0 0 0

3)

interp expr = X0

env = mt-env

k = (doneK)

interp expr = X1

env = mt-env

k = (appArgK X3 mt-env (doneK)) = k1

cont k = k1
val = (closV ’x X2 mt-env) = v1

interp expr = X3

env = mt-env

k = (doAppK v1 (doneK)) = k2

cont k = k2
val = (closV ’y X4 mt-env) = v2

interp expr = X2

env = (extend-env (bind ’x v2) mt-env) = e1
k = (doneK)

interp expr = x

env = e1
k = (appArgk x e1 (doneK)) = k3

cont k = k3
val = v2

interp expr = x

env = e1
k = (doAppK v2 (doneK)) = k4

cont k = k4
val = v2

interp expr = X4

env = (extend-env (bind ’y v2) mt-env) = e2
k = (doneK)

interp expr = 5

env = e2
k = (plusSecondK 7 e2 (doneK)) = k5

4



cont k = k5
val = (numV 5)

interp expr = 7

env = e2
k = (doPlusK (numV 5) (doneK)) = k6

cont k = k6
val = (numV 7)

cont k = (doneK)
val = (numV 12)

Same answer, but not expanding many abbreviations (which isn’t recommended when you’re writing
them by hand):

interp expr = {{lambda {x} {x x}} {lambda {y} {+ 5 7}}} or X0

env = mt-env

k = (doneK)

interp expr = {lambda {x} {x x}} or X1

env = mt-env

k = (appArgK {lambda {y} {+ 5 7}} mt-env (doneK)) = k1

cont k = (appArgK {lambda {y} {+ 5 7}} mt-env (doneK)) or k1

val = (closV ’x {x x} mt-env) = v1

interp expr = {lambda {y} {+ 5 7}} or X3

env = mt-env

k = (doAppK v1 (doneK)) = k2

cont k = (doAppK v1 (doneK)) or k2

val = (closV ’y {+ 5 7} mt-env) = v2

interp expr = {x x} or X2

env = (extend-env (bind ’x v2) mt-env) = e1
k = (doneK)

interp expr = x

env = (extend-env (bind ’x v2) mt-env) or e1
k = (appArgk x e1 (doneK)) = k3

cont k = (appArgK x e1 (doneK)) or k3
val = v2

interp expr = x

env = (extend-env (bind ’x v2) mt-env) or e1

5



k = (doAppK v2 (doneK)) = k4

cont k = (doAppK v2 (doneK)) or k4
val = v2

interp expr = {+ 5 7} or X4

env = (extend-env (bind ’y v2) mt-env) = e2
k = (doneK)

interp expr = 5

env = (extend-env (bind ’y v2) mt-env) or e2
k = (plusSecondK 7 e2 (doneK)) = k5

cont k = (plusSecondK 7 e2 (doneK)) or k5
val = (numV 5)

interp expr = 7

env = (extend-env (bind ’y v2) mt-env) or e2
k = (doPlusK (numV 5) (doneK)) = k6

cont k = (doPlusK (numV 5) (doneK)) or k6
val = (numV 7)

cont k = (doneK)
val = (numV 12)

6


