
Scalability, Fidelity, and Containment
in the Potemkin Virtual Honeyfarm

Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft,
Alex C. Snoeren, Geoffrey M. Voelker, and Stefan Savage

Collaborative Center for Internet Epidemiology and Defenses
Department of Computer Science and Engineering

University of California, San Diego

ABSTRACT
The rapid evolution of large-scale worms, viruses and bot-
nets have made Internet malware a pressing concern. Such
infections are at the root of modern scourges including DDoS
extortion, on-line identity theft, SPAM, phishing, and piracy.
However, the most widely used tools for gathering intelli-
gence on new malware — network honeypots — have forced
investigators to choose between monitoring activity at a
large scale or capturing behavior with high fidelity. In this
paper, we describe an approach to minimize this tension and
improve honeypot scalability by up to six orders of magni-
tude while still closely emulating the execution behavior of
individual Internet hosts. We have built a prototype hon-
eyfarm system, called Potemkin, that exploits virtual ma-
chines, aggressive memory sharing, and late binding of re-
sources to achieve this goal. While still an immature im-
plementation, Potemkin has emulated over 64,000 Internet
honeypots in live test runs, using only a handful of physical
servers.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—In-

vasive software; C.2.0 [Computer-Communication Net-
works]: General—Security and protection; D.4.2 [Oper-
ating Systems]: Storage Management—Virtual memory ;
C.2.3 [Computer-Communication Networks]: Network
Operations—Network monitoring

General Terms
Measurement, Security

Keywords
copy-on-write, honeyfarm, honeypot, malware, virtual ma-
chine monitor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’05, October 23–26, 2005, Brighton, United Kingdom.
Copyright 2005 ACM 1-59593-079-5/05/0010 ...$5.00.

1. INTRODUCTION
The ability to compromise large numbers of Internet hosts

has emerged as the backbone of a new criminal economy en-
compassing bulk-email (SPAM), denial-of-service extortion,
phishing, piracy, and identify theft. Using tools such as
worms, viruses and scanning botnets, the technical cadre
of this community can leverage a handful of software vul-
nerabilities into a large-scale virtual commodity — hun-
dreds of thousands of remotely controlled “bot” hosts —
that are then used, resold or leased for a variety of illegal
purposes [13].

While a range of tactical countermeasures can be em-
ployed against the uses of these hosts (e.g., SPAM filters,
DoS defenses), combating the underlying infestation requires
first understanding the means and methods used to compro-
mise and subsequently control the bot population. By far,
the most important tool for this purpose is the honeypot.
Put simply, a honeypot is a network-connected system that
is carefully monitored (and frequently left unprotected) so
that intrusions can be easily detected and precisely ana-
lyzed. Such information is then used in turn to create anti-
virus signatures (to limit further growth), to develop disin-
fection algorithms (to eradicate existing infections), and to
support criminal investigation and prosecution.

In practice, however, deploying a large network of hon-
eypot systems, a honeyfarm, exposes a sharp tradeoff be-
tween scalability, fidelity, and containment. At one extreme,
so-called “low-interaction honeypots” can monitor activity
across millions of IP addresses at a time. Such honeypots
achieve this scalability by only emulating the network in-
terface exposed by common services and thus maintaining
little or no per-honeypot state [27, 40]. However, since these
systems do not execute any code from native applications or
operating systems they are unable to determine if an attack
is effective, why a given exploit works, what the payload
does, or how the compromised system will be controlled,
updated, or used. Indeed, such systems may be unable to
even elicit attacks that require multiple phases of communi-
cation.

In contrast, “high-interaction honeypots” execute native
system and application code and thus can capture malicious
code behavior in its full complexity [12, 32]. Unfortunately,
the price of this fidelity is invariably quite high. In their
simplest form these systems require a single physical host
for each monitored IP address, and while some systems use
virtual machines to reduce this requirement, it is rarely cost-



effective to support more than a few thousand hosts.1 Fi-
nally, all of these systems struggle to balance the need for
containment — preventing compromised honeypots from at-
tacking third-party systems — and the desire to allow un-
fettered network access to enhance system fidelity.

In this paper, we describe a honeyfarm system architec-
ture that can scale to design points previously reserved for
stateless monitors (hundreds of thousands of IP addresses),
while offering fidelity qualitatively similar to high-interaction
honeypots. The heart of our approach is to dynamically bind
physical resources to external requests only for the short pe-
riods of time necessary to emulate the execution behavior
of dedicated hosts. By exploiting idleness at the network
layer and physical memory coherence between hosts, we ar-
gue that the resource requirements of emulating an Internet
host can be reduced by up to six orders of magnitude in
practice.

To demonstrate our approach, we have implemented a
prototype honeyfarm system, called Potemkin, based on a
specialized network gateway and a virtual machine monitor
derived from Xen. At the network layer, individual flows
are dispatched to a collection of honeyfarm servers which,
in turn, dynamically instantiate new virtual machines to
assume the role of each destination IP address. To reduce
overhead and increase the number of VMs supported on each
honeyfarm server we propose two techniques: flash cloning

and delta virtualization. The former instantiates new VMs
quickly by copying and modifying a host reference image,
thus avoiding the startup overhead of system or application
initialization, while the latter optimizes this copy operation
using copy-on-write, thus exploiting the memory coherence
between different VMs. Finally, our network gateway sup-
ports a wide range of containment policies allowing cus-
tomizable tradeoffs between potential liability and greater
fidelity.

In the remainder of this paper we describe our design in
more detail and our initial experiences in its use. Section 2
provides background information on honeypots and places
our approach in context with previous related work. We
outline our system architecture in Section 3, followed by
a more elaborate description of the Potemkin prototype in
Section 4, and present the results of our initial experiences in
Section 5. Finally, we discuss the limitations and challenges
of our approach in Section 6, and summarize our overall
findings in Section 7.

2. BACKGROUND AND RELATED WORK
The Honeynet Project gives one of the few precise defini-

tions for the term honeypot [12]:

A honeypot is an information system resource
whose value lies in unauthorized or illicit use of
that resource.

This basic idea undoubtedly predates computers as it was
an established counter-intelligence technique during much of
the late 20th century. However, the idea was first popular-
ized in the computing community via Bill Cheswick’s paper
“An Evening with Berferd” and the contemporaneous novel,

1The largest high-interaction honeypot system we are aware
of is Symantec’s DeepSight system, which uses 40 servers
executing VMware to emulate 2000 IP addresses [24].

The Cuckoo’s Egg by Cliff Stoll [5, 31]. In these early ac-
counts, attackers were ensnared by presenting the illusion
that they had broken into a system of interest. However,
these lone honeypots were very low tech – in Cheswick’s
case, the illusion was manually generated! Dedicated hon-
eypot hosts were soon introduced into practice and by the
mid-1990s both the term honeypot and the basic approach
were well established.

Over the past decade, honeypots have emerged as the
principal tool for gathering intelligence on new means and
methods used by attackers. The underlying strength of the
approach lies in its simplicity: since a honeypot receives few
legitimate communications, an attacker’s actions are easy to
discern. Moreover, since honeypots are carefully provisioned
they provide an idealized monitoring capability to the de-
fender. However, this same simplicity is also a weakness.
While a defender can try to make a honeypot server exter-
nally attractive, it is not possible to force an attacker to
take the bait. Thus honeypots are most useful for capturing
indiscriminate or large-scale attacks, such as worms, viruses
or botnets, rather than very focused intrusions targeting a
particular host. We discuss this issue further in Section 6,
but in this paper we focus primarily on the former use.

Over the last decade there have been a wide variety of
honeypot systems built, both academic and commercial.
Roughly speaking, these systems have fallen into two broad
categories, low-interaction and high-interaction, reflecting
an inherent tension between fidelity and scalability.

As the name suggests, low-interaction honeypots offer min-
imal interaction with the attacker and typically only emulate
portions of an emulated host’s network behavior. Perhaps
the most extreme point in this design space is the network

telescope, which passively monitors inbound packets directed
at large ranges of quiescent IP address space [22, 23]. The
principal strength of this approach is its scalability — net-
work telescopes have successfully monitored ranges in excess
of 16 million IP addresses and have been used to track ma-
jor worm outbreaks such as CodeRed and Slammer [20, 21].
Unfortunately, since a network telescope is entirely passive
it cannot complete the TCP handshake and thus elicit the
payload or exploit of most attacks — let alone analyze what
they would do.

To address this deficiency, some honeypots employ active

responders to reply to inbound packets appropriately and
elicit a more complex transaction. The most basic of these
approaches simply transmits a SYN/ACK sequence in re-
sponse to TCP SYN packets [1, 30]. More complex systems,
such as Yegneswaran et al.’s iSink, implement per-protocol
responders that can more precisely emulate the network be-
havior that a real attacker would experience [26, 40]. Both
of these approaches can be designed in a purely stateless
fashion, approaching the scalability of a passive monitor.
Finally, some low-interaction honeypots, such as Provos’
widely used honeyd system, do maintain per-flow and per-
protocol state to allow richer emulation capabilities [27].

However, none of these systems execute the kernel or ap-
plication code that attackers seek to compromise and there-
fore they cannot witness an exploit in action, nor observe the
attacker’s actions after a host is compromised. To address
this need, high-interaction honeypots offer an execution en-
vironment identical or similar to a real host and thus allow
the attacker’s behavior to be monitored with high fidelity.
The simplest of these approaches uses individual servers for



each monitored IP address [12]. These are, for all intents
and purposes, identical to real systems and therefore rep-
resent the gold standard for a honeypot. Unfortunately,
this approach is extremely expensive to scale and to man-
age. For this reason, researchers and practitioners alike have
turned to modern virtual machine monitors (VMM) — such
as VMware, Xen, Virtual PC, and User Mode Linux — to
instantiate (multiple) honeypots on a single server.

The virtual machine environment offers several benefits
for implementing a honeypot. First, it is easy to manage,
since most VMMs allow individual VMs to be loaded, frozen
or stored on demand. Indeed, it is this management ad-
vantage that has driven the use of VMs in honeypots in
operational deployments (typically under the name virtual

honeynets) [12]. As well, VMMs also offer an ideal plat-
form for instrumenting and monitoring the activities within
a compromised system, including interactive input, mem-
ory and disk allocation, patterns of system calls and the
content of endpoint network flows [4, 8, 11, 15, 18]. Even
stealthy malware, such as kernel rootkits, can be detected
since a VMM executes outside the compromised environ-
ment. Finally, VMMs allow multiple honeypots to be im-
plemented by a single server — thus reducing deployment
costs. For example, Dagon et al. propose supporting up to
64 VMs per physical host using VMware’s GSX server [8].
In fact, Whitaker et al. demonstrate scalability to the thou-

sands of simultaneous virtual machines using a customized
VMM [38]. However in this case the hosted “guest” systems
were small customized libraries rather than a transparent
commodity operating system and application environment
required by a honeypot. In practice, we are unaware of any
VM-based honeypot deployment that uses more than 8 VMs
per physical host or scales beyond 2000 IP addresses in to-
tal.

3. ARCHITECTURE
In its purest incarnation, a honeyfarm is simply a collec-

tion of monitored Internet hosts running common operating
system and application software. It is exactly this high-
fidelity abstraction that we strive to preserve. However, our
other goals, of scalability and containment, demand a signif-
icantly modified realization. In this section, we discuss how
these requirements shape our architecture and describe how
our network gateway and virtual machine monitor compo-
nents achieve these.

3.1 Scalability
Addressing scalability first, our key insight is that the

work required to emulate a host is ultimately driven by ex-
ternal perception. To paraphrase Bishop Berkeley: If a host
exposes a vulnerability, but no one exploits it, was it really
vulnerable? We argue that since dedicated honeypots have
no independent computational purpose, only tasks driven
by external input have any value.

By this metric, a conventional network of honeypot servers
is horrendously inefficient. First, most of a honeypot’s pro-
cessor cycles are wasted idling (since any given IP address
is rarely accessed). Second, even when serving a request,
most of a honeypot’s memory is idle as well (since few unso-
licited requests demand significant memory resources from
a host). Finally, different honeypot servers in a honeyfarm
replicate the same environment and thus duplicate the effort
in maintaining common state and executing common code

paths. In fact, a conventional honeypot network will use far
fewer than one percent of processor or memory resources for
their intended purpose.

To avoid these inefficiencies, our architecture stresses the
late binding of resources to requests. As network packets
arrive, a specialized gateway router dynamically binds IP
addresses to physical honeyfarm servers. For each active
IP address, a physical server creates a lightweight virtual
machine from a reference image (flash cloning), but only al-
locates new physical memory for these VMs as they diverge
from the reference (delta virtualization). In its full imple-
mentation, we believe that this design can minimize proces-
sor and memory idleness and allow a single physical server to
support the illusion of hundreds of network-attached hosts.

3.2 Containment
In steady-state, virtual machines are created and then

quickly retired since most probes do not instantiate suc-
cessful attacks. However, a new problem emerges when a
virtual host is successfully compromised: it may attempt to
attack or infect a third party. Indeed, a large-scale network
honeyfarm could easily become a malware incubator or even
an accelerator for a network worm. While we are unaware
of a precise governing legal precedent, our purposeful negli-
gence, foreknowledge of the risk, and inaction after detecting
an intrusion creates the potential for significant third-party
liability. Thus, making a large-scale honeyfarm practicable
requires a defensible procedure and containment policy for
controlling the actions of a compromised host.

However, the instantiation of this policy exposes an inher-
ent tradeoff between a honeypot’s fidelity and containment
rigor. For example, the most extreme form of containment
would disallow all outbound packets. Unfortunately, this
policy would also prevent such simple interactions as the
TCP handshake and thus blind a honeyfarm to the vast
majority of attack vectors. A slightly less restrictive policy,
used by the Honeywall system, might only forward outbound
packets sent in response to inbound packets [12]. This policy
too presents challenges; it does not allow benign third-party
requests, such as for Domain Name System (DNS) trans-
lations. Moreover, modern worms, viruses and particularly
botnets incorporate the ability to “phone home” to receive
updates and commands. Without allowing these transac-
tions it is impossible to understand the native behavior of
a given piece of malware. Supporting these situations po-
tentially requires a dynamic policy that can act on traffic
characteristics exhibited by a particular honeypot.

Our architecture places the burden of implementing the
containment policy on the gateway router. Thus, the gate-
way must track the communication patterns between exter-
nal Internet addresses and the addresses being emulated by
its honeyfarm servers. Moreover, it must be able to proxy or
scrub standard outbound service requests such as DNS [19].
While these requirements add overhead, centralizing this
complexity in one place dramatically simplifies management
and policy specialization. For example, this design makes
internal reflection simple to implement. When the contain-
ment policy determines that an outbound packet cannot be
safely forwarded to the Internet, the gateway can reflect it
back into the honeyfarm which will then adopt the iden-
tity of the destination IP address — effectively virtualizing
the entire Internet. While this reflection must be carefully
managed to avoid resource starvation, it can offer signifi-



cant insight into the spreading dynamics of new worms and
supports high-quality detection algorithms based on causal
linkage [9, 39].

However, reflection introduces an additional challenge as
well. Two distinct compromised VMs may each send a
packet to the same external IP address A — each packet
itself subject to reflection. Thus, the gateway must decide if
the honeyfarm creates a single VM to represent the address
A or if these requests create two distinct VMs each assum-
ing the same IP address A. The first approach allows cross-
contamination between distinct contagions, and in turn this
creates an opportunity for the honeyfarm to infect an outside
host. For example, suppose external Internet hosts X and
Y each infect the honeyfarm via addresses AX and AY with
unique worms, WX and WY . In turn, the VM representing
AX may then infect AY with WX and the VM representing
AY may infect AX with its infection in turn. Thus, each
VM is infected with both worms. Since packets from AX to
Internet host X are forwarded without reflection, it is now
possible for AX to infect this host with worm WY , which
again creates a new potential liability. Just because a host
is infected by one virus does not give us the right to infect
it with an unrelated virus. At the same time if the gateway
creates unique aliases for each infection (such that no two
worms may intermingle) this eliminates the possibility to
capture symbiotic behavior between different pieces of mal-
ware. For example, the Nimda worm exploited a backdoor
previously left by the CodeRed II worm. These problems
have no ideal solution and thus it is important to be able to
control how and when address aliasing is allowed to occur.

To support this level of control, we have introduced an ad-
ditional address aliasing mechanism that captures the causal
relationships of communication within the honeyfarm. Con-
ceptually each packet is extended with a universe identifier

that identifies a unique virtual IP address space. Universe
identifiers are created when a new transaction is initiated
from the external Internet. For example, when a new packet
P arrives from the Internet destined for address X, it may
create a new universe id UPX . In turn, packets may only
be reflected to hosts within the same universe from whence
they came. Thus, a given infection can spread within the
honeyfarm while being completely isolated from the influ-
ence of other infections. Capturing symbiotic, inter-worm
behavior can be achieved by designating “mix-in” universes
that allow instances of specific contagions to intermingle.
Space limits prevent a full exploration of the richness and
challenges presented by this abstraction, but we believe it
encapsulates much of complexity introduced by reflection.

Our overall architecture, including an example of reflec-
tion, is roughly illustrated in Figure 1. In the remainder
of this section we describe the gateway and virtual machine
monitor functionality in more depth.

3.3 Gateway Router
The gateway is effectively the “brains” of the honeyfarm

and is the only component that implements policy or main-
tains long-term state. More precisely, it supports four dis-
tinct functions: it must direct inbound traffic to individual
honeyfarm servers, manage the containment of outbound
traffic, implement long-term resource management across
honeyfarm servers, and interface with detection, analysis
and user-interface components. We consider each of these
functions in turn.

Figure 1: Honeyfarm architecture. Packets are re-
layed to the gateway from the global Internet via
direct routes or tunnel encapsulation. The gate-
way dispatches packets to honeyfarm servers that,
in turn, spawn a new virtual machine on demand to
represent each active destination IP address. Subse-
quent outbound responses are subject to the gate-
way’s containment policy, but even those packets
restricted from the public Internet can be reflected
back into the honeyfarm to elicit further behavior.

3.3.1 Inbound Traffic
The gateway attracts inbound traffic through two mecha-

nisms: routing and tunneling. Individual IP prefixes may be
globally advertised via the Border Gateway Protocol (BGP)
and the gateway will act as the “last hop” router for pack-
ets destined to those addresses. This is the simplest way
of focusing traffic into the honeyfarm, but has a number
of practical drawbacks, since it requires the ability to make
globally-visible BGP advertisements and also renders the lo-
cation of the honeyfarm visible to anyone using tools such as
traceroute. An alternative mechanism for attracting traf-
fic is to configure external Internet routers to tunnel packets
destined for a particular address range back to the gateway.
This approach adds latency (and the added possibility of
packet loss) but is invisible to traceroute and can be op-
erationally and politically simpler for many organizations.
These techniques have been used by several other honey-
farm designs, most recently in the Collapsar system [15].

Through this combination of mechanisms, a variety of
packets destined for a variety of IP address prefixes arrive at
the gateway. These must then be assigned to an appropriate
backend honeyfarm server. Packets destined for inactive IP
addresses — for which there is no active VM — are sent
to a non-overloaded honeyfarm server. This assignment can
be made randomly, can try to maximize the probability of
infection (e.g., a packet destined for a NetBIOS service is
unlikely to infect a VM hosting Linux since that service is
not natively offered) or can be biased via a type map to pre-
serve the illusion that a given IP address hosts a particular
software configuration. Such mappings can be important if
attackers “pre-scan” the honeyfarm for vulnerabilities and



then exploit them at a significantly later date. Packets des-
tined for active IP addresses are sent to the physical server
implementing the associated VM. Thus, all of the packets
in an extended flow — the set of contemporaneous transac-
tions between a source and destination — will be directed
to the same VM on the same physical honeyfarm server. To
support this assignment the gateway must maintain state
for each live VM in the system and must track the load and
liveness of individual servers.

Moreover, the gateway must manage these assignments
intelligently in response to changes in inbound traffic. For
example, a common behavior that must be accommodated
is network port scanning — where a single source contacts
a large number of destinations in the same address range
simply to see if the machine is live or if a given service is
implemented. Instantiating a VM for each scan packet can
inflate the demands on the honeyfarm unnecessarily. In-
stead, the gateway can filter packets from the same source
to multiple destinations or arrange for scans to be proxied
(either by the gateway itself or a shared VM) and then mi-
grate to a dedicated VM if a more substantive transaction
occurs. Similarly, during a worm outbreak a large num-
ber of effectively identical infections will cross the gateway.
Since a new identical infection is unlikely to impart addi-
tional knowledge, the gateway may use pattern-matching
algorithms to filter out such “known” attacks [16, 18, 29].
Bailey et al. describe a similar data reduction technique us-
ing low-fidelity responders to help prune traffic destined for
high-fidelity virtual machines [2].

Finally, to simplify the operation of the gateway, the hon-
eyfarm servers do not have innate IP addresses themselves.
Instead, each server is addressed entirely using datalink-
layer (i.e., Ethernet) addresses. This approach eliminates
the need for the gateway to implement Network Address
Translation (NAT) in the common case and allows the gate-
way to forward packets to individual servers unchanged.

3.3.2 Outbound Traffic
The gateway implements the only physical connection be-

tween the honeyfarm servers and the outside Internet so it
can ensure that all traffic is subject to the same containment
policy. To implement a basic response-only policy requires
the gateway to track which source addresses have recently
contacted each destination address. By contrast, a “fast-
spread” containment policy might buffer outbound packets
on a per-VM basis and block or reflect these packets if more
than a small number of unique destination addresses are
found. An additional practical complication is presented by
DNS requests since a “normal” host is typically configured
with the IP address of its local DNS server to which it di-
rects name translation requests. Thus the gateway must
either implement a DNS server itself (and forge the source
address to appear to belong to the appropriate network) or
allow outbound DNS requests to be proxied to a dedicated
DNS server.

Finally, traffic that does not pass the containment fil-
ter may be reflected into the honeyfarm as described ear-
lier. The gateway must moderate this reflection to pre-
vent a worm epidemic from consuming all honeyfarm re-
sources. Among the policies for managing honeyfarm re-
sources are: partitioning the honeyfarm so only a subset
of servers are dedicated to internal reflection; limiting the
number of “hops” that a given communication may traverse;

and, limiting the number of reflections with an identical or
similar payload.

3.3.3 Resource Allocation and Detection
While it is clear when to create a new virtual machine,

when to reclaim one is a more complex decision. Ideally,
a VM would only persist long enough to determine that
a particular attack was unsuccessful. Thus, optimizing re-
source usage requires the gateway to interpret input from
network-based [33, 37] or host-based detectors [7, 25, 28].
The gateway can allow VMs that are known to be compro-
mised to persist for further analysis, logging, or manipula-
tion. VMs that remain in an uncompromised state can be
reclaimed if they are no longer receiving inbound traffic. As
well, when resources are low — due to network epidemics or
explicit denial-of-service attacks — the gateway must pri-
oritize which VMs should be reclaimed, which should be
frozen to secondary storage, and which can continue to exe-
cute. However, balancing this need with the requirement for
load balancing may be challenging. Servers running system
images that have a disproportionate number of targeted vul-
nerabilities may, in turn, become disproportionately loaded
(assuming compromised VMs are reclaimed with lower pri-
ority).

3.4 Virtual Machine Monitor
A principal role of the gateway is to remove idleness in the

IP address space utilization. While the number of simulta-
neously active IP addresses is typically orders of magnitude
smaller than the enclosing address range, it is still expensive
to provision that many physical honeyfarm servers. How-
ever, since handling a typical request only requires a small
subset of the server’s hardware resources, a single server can
potentially be multiplexed across a larger number of distinct
IP addresses.2 However, one cannot safely share a single op-
erating system and application environment among requests
to distinct IP addresses. Without isolation, one successful
attack could pollute the behavior of all subsequent interac-
tions. This is particularly problematic since modern botnets
routinely patch security vulnerabilities to prevent competi-
tion from other attackers.

To provide isolation, our architecture uses a specialized
virtual machine monitor to create a new virtual machine for
each distinct IP address served. When a packet arrives for a
new IP address, the VMM spawns a new VM. Once this new
VM is ready, it adopts the packet’s destination address and
handles the request as though it were the intended recipi-
ent. Subsequent packets to the same IP address can then
be delivered directly to that VM. Since each IP address is
served by a distinct VM, any side effects from an attack will
be isolated from other VMs. Finally, when instructed by the
gateway the VMM can reclaim the resources of VMs that
are no longer being monitored.

While this strategy provides isolation, it can also be quite
expensive if implemented naively. In particular, a new VM
can incur significant overhead initializing, booting an oper-
ating system, and loading application software. Not only
does this overhead subtract from useful work, but if initial-
ization takes too long any inbound connection request may
time out. More critically, each VM may consume tens or

2In our measurements, handling a TCP session and serving
a simple Web page consumes significantly less than 1ms of
CPU time on a modern Pentium-based server system.



hundreds of megabytes of memory to represent its machine
state.

For general computing purposes these costs are mostly
unavoidable. However, given the restricted context of a
network honeyfarm there are tremendous optimization op-
portunities. In particular, since the gateway manages ad-
dress assignment, it can preserve the illusion of heterogene-
ity while physical honeyfarm servers only support homoge-
neous virtual machine images. Thus, by restricting a server
to execute a single combination of operating system and ap-
plication software, a new virtual machine may be created en-
tirely via copying — a process we call flash cloning. To sup-
port this technique, each server maintains a reference image
that provides a memory snapshot of a pre-initialized operat-
ing system and application environment. When a new VM
needs to be created, this reference image is simply copied, its
identity changed to reflect the appropriate network state (IP
address, default gateway, DNS server, etc.), and then control
is transferred directly. Using this approach, the overhead of
creating a new VM can be reduced by well over an order of
magnitude.

Exploiting the same homogeneity, the per-VM state re-
quirement can also be significantly reduced. Since each VM
is known to be a near-perfect clone of the same reference
image, most of the state (code and data) in each VM is
identical. Thus, instead of physically copying the reference
image, a new VM can be equivalently instantiated via a
copy-on-write optimization, which we term delta virtualiza-

tion. Consequently, all memory pages which are unique to a
given VM will be represented with their own dedicated stor-
age, but most pages that are identical between VMs will be
physically shared.3 Similarly, when a VM is reclaimed this
simply requires flushing the modified mappings and return-
ing newly allocated pages to the free pool. Depending on the
memory behavior of each system/application environment
and the lifetime of each VM, this optimization can reduce
per-VM state requirements by factor of 100. As well, it can
reduce the VM startup overhead even further in exchange
for slower execution as modified pages are lazily copied.

4. IMPLEMENTATION
We have implemented a limited version of this architecture

in a prototype system we call Potemkin.4 In the remainder
of this section we discuss the implementation of the individ-
ual network gateway and VMM components that make up
the system.

4.1 Gateway
The Potemkin gateway is built on top of the Click mod-

ular software router framework [17]. A router implemented
in Click consists of a set of packet processing modules called
elements, implemented as C++ classes. Using a special de-
scription language (a Click “configuration”), elements can
be connected together to form a directed graph that rep-
resents how packets flow through the processing modules.

3This approach is similar in principle to the content-based
page sharing in VMware’s ESX Server, but our environment
is far simpler since it is known that a new VM will exhibit
perfect sharing relative to the reference image [34].
4The name originates from the legendary Potemkin Villages
— elaborate facades allegedly created by Russian Field Mar-
shal Grigor Potemkin to fool Empress Catherine II during
her tour of conquered lands in the late 18th century.

Upon the base Click installation, our implementation adds
roughly 5800 lines of custom element code, 450 lines for con-
figuration and 1000 lines for an administrative interface. We
briefly describe the operation, overheads and tradeoffs in our
implementation below.

Each incoming packet is first stripped of any Generic Rout-
ing Encapsulation (GRE) headers [10] and then validated
as being a credible honeyfarm address. Packets are subse-
quently matched against a series of programmable filters,
which can be specified dynamically using a tcpdump-like
syntax. The most important of these is an optional “scan
filter” that limits the number of inbound packets from a
given external source IP address using the same destination
port and transport protocol. In our implementation, only
one such packet may be delivered in any sixty-second win-
dow while the rest are dropped. This filter is designed to
eliminate the overhead of creating thousands of short-lived
VMs (i.e., one packet lifetime) when a single Internet host
probes the same service across a range of monitored IP ad-
dresses (known commonly as a “horizontal port scan”). In
future implementations, we plan to replace this filter with a
responder proxy on each VMM that can defer VM creation
until a complete session is established.

Unfiltered packets are matched against a flow cache to
see if a VM has already been allocated for it. If so, the
cache entry includes packet rewriting rules that install the
destination MAC address of the physical server hosting the
VM. In this case total forwarding overhead is approximately
8 µs. Failing a match in the flow cache, packets are checked
against a history table that maintains long-term state about
source/destination communication as well as access times-
tamps used to drive state reclamation decisions under load.
Initial packets to a given IP address are matched against a
host type map to find a physical machine compatible with
the emulated type for that IP address. Between machines
with compatible type, the gateway picks the least lightly
loaded (based on regular reports from the VMM on each
server). The resulting flow information, server address and
timestamps are used to create new history and flow cache
entries and the packet is dispatched to a physical server to
create a new VM. In the worst case, with entirely random
traffic, forwarding overhead is ≈40 µs.

On the outbound path, the operations are quite similar
and differ primarily in their support for containment. The
current implementation provides several containment poli-
cies that can be enabled independently: “history”, which
only forwards packets to external Internet addresses that
have recent entries in the history table; “internal reflect”,
which reflects outbound packets that have been filtered back
into the honeyfarm (triggering the creation of a new VM);
and “protocol proxy”, which allows individual protocol and
service combinations to be forwarded to a proxy (in the cur-
rent gateway this policy is used exclusively to allow a local
DNS server to service DNS requests). Central to the imple-
mentation of these policies is the multi-universe concept de-
scribed in Section 3.2. Thus, each history table entry tracks
the universe identifier for a given packet. Packets from the
Internet are assigned to “Universe-0” and new universe ids
are created in the honeyfarm for each (src, dest, src port)
combination. Internal reflections track the universe id via
the history table so that an outbound packet is subject to
the containment policy of the initial targeted IP address.
Since reflection allows the possibility of externally visible



address aliasing (e.g., two hosts in different universes, each
purporting to be IP address A, sending packets to external
IP address X) the flow cache rewriter rules support address
translation for such connections initiated to the external In-
ternet. In general, a reverse lookup on the flow cache is used
for both forwarding outbound packets to the Internet and
internal reflection. Best and worst case forwarding is sim-
ilar to the inbound path, with the proviso that additional
user-specified filters can add more overhead.

Finally, the gateway also provides a minimal administra-
tion interface used to register and unregister servers, moni-
tor load, and communicate with intrusion detection compo-
nents. In the current implementation this detection is pro-
vided solely via a reimplementation of Singh et al.’s content

sifting worm signature inference algorithm that processes
packets mirrored by the gateway [29].

4.2 Virtual Machine Monitor
The Potemkin VMM is based on the “xen-unstable” de-

velopment branch, soon to be released as Xen 3.0, which we
modified to support our virtual honeyfarm architecture. In
its current form, it only supports paravirtualized hosts —
requiring source modifications to the host OS — and our
experience is solely with Linux.5 We have added or mod-
ified roughly 2,000 lines of code within Xen and an addi-
tional 2,000 lines of code in control software, running within
Domain-0, Xen’s management VM.

In the following, we describe how the Potemkin VMM
instantiates reference images and implements flash cloning
and delta virtualization.

4.2.1 Reference Image Instantiation
To create the reference VM memory image in preparation

for flash cloning, the VMM initializes a new VM, boots the
guest operating system, and finally starts and warms the
designated applications. A snapshot of this environment is
then used to derive subsequent VM images. Note, our cur-
rent implementation does not support disk devices reliably
and thus we use uses memory-based filesystems exclusively.
We expect to fix this restriction shortly and integrate with
the Parallax storage subsystem that offers low-overhead disk
snapshots [36].

4.2.2 Flash Cloning
Figure 2 illustrates the steps for cloning a VM. The prin-

cipal entity involved in this process is the clone manager.
When a honeyfarm server receives a data packet destined for
a previously unseen address A, the VMM passes the packet
to the clone manager, which in turn starts to initialize a new
VM. During this time, it queues subsequent packets arriv-
ing for address A until the cloning process completes. The
clone manager then instructs Xen to create a new VM as
a copy of the reference image. Finally, the manager sends
a special management packet to the newly instantiated VM
to notify it of the new IP address A. When the cloned VM
is resumed it receives this packet and instructs the guest
operating system to set its IP address appropriately.

After the cloning process completes, the clone manager

5We expect to support Windows hosts in the near future
using Xen’s full virtualization support, in development and
slated for inclusion in Xen 3.0. For full virtualization, Xen
relies upon processors supporting Intel’s Vanderpool Tech-
nology (VT) hardware feature set [14].

passed to clone

"change IP to A"
queue

manager’s queue

flushed from

forwarded to Cloned VM

Key

Internal msg

Ti
m

e

address A
packets for new

Domain−0 Network Stack Xen Management Daemon

Clone Manager

Data traffic

IP address
to A

sync with Xenstore
create devices,

Cloned VM
For cloned domain:

Cloned VM’s response traffic

"clone VM"
allocate memory,

reconfigure

Figure 2: Steps to clone a Linux VM.

flushes the packets destined for address A to the cloned VM
and installs a packet filter entry that forwards subsequent
packets destined for A directly to the VM for the remainder
of the VM’s lifetime.

Since the reference VM never responds to packets itself,
the memory allocated to it is in a sense overhead; we get no
useful computation from devoting this memory to the refer-
ence VM. However, the presence of the reference VM does
permit a reduction in the memory requirements of cloned
VMs, as described in the next section.

4.2.3 Delta Virtualization
To reduce state overhead, the Potemkin VMM implements

a copy-on-write optimization, which we call delta virtualiza-

tion, for flash cloned domains. Thus, the cloning operation
simply maps all code and data pages from the reference im-
age into the new domain. However, the clone’s mappings are
write-protected so subsequent modifications can then create
private copies. Although particularly useful for optimizing
flash cloning, our copy-on-write support is a general mech-
anism integrated with Xen. In the rest of this section, we
describe the Xen translated shadow memory model, our ex-
tensions to the model to support copy-on-write functionality,
and end with an example illustrating copy-on-write sharing.

Translated shadow memory. In the standard paravir-
tualized Xen memory model, Xen exposes the underlying
machine addresses of each data page to the VM. Each VM
directly maintains the set of page tables used by the proces-
sor, subject to safety checks imposed by the Xen VMM [3].

Xen additionally supports a shadow page table mode, in
which the page tables maintained by each VM are not used
directly by the processor. Instead, Xen creates shadow page
tables on demand based upon the contents of the VM’s page
tables, and only the shadow page tables are used by hard-
ware. This interposition gives Xen significant flexibility,
since the shadow page tables need not be identical to the
VM’s page tables (though it does come at a performance
cost). For example, shadow page tables are used to assist
in tracking writes to memory pages during live VM migra-
tion [6].

Building on shadow page table support, Xen has a trans-
lated page table mode in which the page frame numbers
stored in guest OS page tables are translated before they are
written to the shadow page tables. Xen can then provide the
illusion of a contiguous range of physical pages to the VM



as a “guest physical address space”, translating addresses
to the scattered set of machine memory pages actually allo-
cated when filling in the shadow page tables. Shadow page
tables can be viewed as a cache of the final computed map-
ping between virtual addresses and machine page frames;
like a cache, shadow page tables can be discarded at any
time and recreated later.

Copy-on-write data structures. We implement delta
virtualization in Potemkin as an extension to Xen’s trans-
lated shadow mode. The indirection provided by translated
shadow mode conveniently lends itself to the need to change
the underlying machine address of a page after a copy-on-
write fault.

For each VM, Xen stores the mapping between the VM’s
notion of physical page frame numbers to the actual ma-
chine page frames in the physical-to-machine mapping ta-

ble.6 Xen stores this data structure, one per VM, in the
format of a hardware page table; this format permits the
physical-to-machine mapping table to be directly used as a
page table when fully virtualizing a VM that believes paging
is disabled. On the x86 architecture, the page table format
includes several bits in each page table entry (PTE) that
are reserved for operating system use; in our delta virtu-
alization implementation we claim these bits for our own
use (although the use of these bits is never visible to the
underlying TLB hardware nor the guest OS).

For each machine page in the system, Xen tracks several
pieces of information in a data structure called the frame ta-

ble: which VM owns the page (if any), a count of references
to the page, a type (for enforcing safety properties), and
a count of references pinning the page to its current type.
Since at most one VM can own each page, pages shared
copy-on-write require special treatment. We create a single
“copy-on-write” VM in the system to act as a container for
all shared pages; this VM never executes any code. Deter-
mining whether a particular page is shared between VMs
is straightforward: check whether the owner is the copy-
on-write VM. We do not track each individual domain that
references a shared page since our implementation does not
require this information. This “copy-on-write” domain rep-
resents an additional memory overhead relative to standard
Xen; however it is a constant overhead irrespective of the
number of VMs and pages, on the order of no more than
tens of kilobytes.

The reference count on each page is used as before, to-
talling the number of references to this page, including PTEs
in the shadow page tables. The type of a shared page is set
to “writable”, which is a default type for pages that do not
have any other special type. We redefine the type count as
the sharing count, or the number of VMs that reference the
page. Even though the page type is marked as “writable”,
when constructing shadow page tables Xen will make all
mappings to a shared page read-only.

Copy-on-write operations. The Potemkin copy-on-
write implementation modifies three main operations: cloning
VM memories, handling copy-on-write faults, and dealing
with shared pages during VM termination.

To create a copy-on-write VM during flash cloning, Po-
temkin performs the following steps:

6Xen uses the term “physical” to refer to addresses of pages
within the illusory contiguous memory space presented to
each VM. The term “machine” refers to the hardware ad-
dress of pages after translation.

1. Discard the shadow page tables associated with the ref-
erence VM as a global invalidation step. Since shared
pages require shadow PTEs to be read-only, the ex-
isting shadow PTEs will likely be invalid after flash
cloning (recall that the shadow page tables are soft
state that can be recreated on demand).

2. Iterate through the physical-to-machine table of the
reference VM. For any page that is already shared,
copy the address of the machine memory page to the
physical-to-machine table of the clone. Increment the
sharing count for the machine page in the frame table
by one.

3. For any page that is not currently shared, but can
be, change the owner of the page to Shared in the
frame table, insert a reference to the page in the clone’s
physical-to-machine table, and set the sharing count to
two in the frame table.

4. For any pages that cannot be shared, allocate a new
page for the clone, copy the page contents, update the
frame table for the new page, and leave the pages un-
shared.

To handle a copy-on-write fault, Potemkin performs the
following steps:

1. Check whether the sharing count is currently one. If
so, the page is not actually shared with another VM
— simply transfer ownership to the faulting VM.

2. Otherwise, allocate a new page and copy the contents
from the shared page. Update the physical-to-machine
mapping table of the faulting VM to point to the newly
created page.

3. Decrement the sharing count of the shared page in the
frame table.

4. Invalidate all shadow PTEs in the faulting VM that
point at the shared page since the machine address of
that page has just changed.

We may break the sharing of pages in this manner at other
times. When the type of a page must be changed, such as
when a page is used as part of the x86’s Global Descriptor
Table, we break page sharing. We also do not currently
permit a page to be shared when it is used as part of a page
table and has associated shadow page table state. Finally,
pages used for I/O may not be shared.

The last operation in a copy-on-write fault, invalidating
shadow PTEs that point at the old page, is currently un-
optimized because we do not track the location of all the
PTEs pointing at a given memory page. Presently, we scan
all shadow page table pages within the VM to perform this
operation. In the future, we plan to optimize this step using
another data structure. At a memory cost of approximately
four bytes per shadow page table entry, we can track the
page table entries to be invalidated and remove the need to
scan all shadow page table entries.

In the current implementation of Potemkin, normal page
faults are handled by Xen in 0.5–10 µs, depending upon the
type of page fault and the work that must be done. Copy-
on-write faults that only have to mark a page as unshared
take an average of 10 µs, and faults that must make a full
page copy an average of 60 µs.



Figure 3: Illustration of translated shadow memory management in Xen for two guest domains in three
scenarios: (a) without sharing, (b) with copy-on-write sharing, and (c) after a copy-on-write fault. Boxes
represent various memory abstractions managed by Xen, squares represent pages, and arrows represent
mappings of pages from one memory domain to another as maintained by the Xen mapping data structures:
guest OS page tables (guest VAS to PAS), physical-to-machine mapping tables (guest PAS to MM), and
shadow page tables (guest VAS to MM). The frame table tracks the ownership and sharing status of the
pages in machine memory.

Finally, at VM destruction, Xen ordinarily frees all the
pages owned by the VM. In addition, the Potemkin VMM:

1. Walks the physical-to-machine mapping table, decre-
menting the sharing count in the frame table of all
shared pages.

2. Frees any machine memory pages whose sharing count
drops to zero.

Delta virtualization example. Figure 3 illustrates Po-
temkin’s extension of Xen’s translated shadow mode with
copy-on-write sharing. It shows how Xen maps a virtual
page in each of two guest domains, A and B, into machine
memory for three scenarios. The first scenario depicts the
use of translated shadow mode without copy-on-write. Xen
maps virtual pages in a virtual address space (VAS) into a
linear guest physical address space (PAS); for guest A, Fig-
ure 3(a) shows this mapping as a solid arrow from page 6 in
the guest VAS to page 2 in the guest PAS. The page tables
in the guest operating system maintain this mapping under
the illusion that the guest OS is managing main memory
directly. Xen then maps pages in the guest physical ad-
dress space into machine memory (the arrow from page 2 in
the PAS to page 3 in MM). The physical-to-machine table
for each domain maintains this mapping. Recall that the
shadow page tables embody the full mapping from a guest
virtual page to a machine memory page so that the hardware
can perform virtual address translation. The figure repre-
sents this full mapping as a dashed arrow from page 6 in the
guest VAS to page 3 in MM. Finally, the frame table tracks
the ownership of each machine page. In this case, guest A

owns machine page 3 and guest B owns page 9. Since nei-
ther of the machine pages is shared, the protection bits in
the PTEs from the shadow page tables are set “read/write”.

Figure 3(b) shows copy-on-write sharing as if Potemkin
flash-cloned guest B from A. In this example, Potemkin
maps physical page 2 in the physical address spaces of both
guests to page 3 of machine memory. Potemkin sets the
protection bits in the PTEs in the shadow page tables for
each guest domain to “read-only” to protect the shared page.
In the frame table, Potemkin marks page 3 as shared with a
sharing count of two.

Finally, Figure 3(c) shows the situation after a copy-on-
write fault when guest B writes to its virtual page 6. In
handling the fault, Potemkin allocates machine page 11,
copies the contents of machine page 3 to 11, and updates
the physical-to-machine mapping table for guest B so that
B’s physical page 2 now maps to machine page 11. Potem-
kin also updates B’s shadow page table to reflect the new
mapping, and sets the protection for the shadow PTE to
“read/write” now that B has a private copy of the page.
Potemkin updates the frame table as well, recording that B

owns machine page 11. Note that machine page 3 remains
shared, although Potemkin decrements its reference count
from two to one.

5. EVALUATION
In this section we evaluate our architecture and the Po-

temkin prototype honeyfarm implementation. We focus on
answering the following three key questions addressing the
scalability of our approach:



• How many high-fidelity honeypot virtual machines are
necessary for a honeyfarm to multiplex a given IP ad-
dress space?

• How many physical resources are necessary for a hon-
eyfarm to multiplex those honeypot virtual machines?

• How quickly does a centralized gateway become a bot-
tleneck for honeyfarm scalability?

In summary, our results demonstrate that dynamic IP ad-
dress multiplexing and scan filtering can reduce the number
of honeypot servers required by three orders of magnitude.
Further, we show that flash cloning and delta virtualization
enable our design to support potentially hundreds of live
VMs on each of these servers. Finally, we show that there is
only moderate gateway overhead required to support fine-
grained containment policies. Taken together, we argue that
it is practical to deploy a honeyfarm that offers high-fidelity
host emulation for hundreds of thousands of IP addresses
while using only tens of physical servers.

5.1 Potemkin Testbed
Our experimental testbed consists of Dell 1750 and SC1425

servers, configured with 2.8GHz Xeon processors, 2GB of
physical memory, and 1Gbps Ethernet NICs. The honey-
farm servers run the Potemkin VMM based on a pre-release
version of Xen 3.0 as described in Section 4. We use De-
bian GNU/Linux 3.1 as the Xen guest operating system for
constructing the honeypots. The gateway server is based on
the Click 1.4.1 distribution running in kernel mode.

The honeyfarm servers and gateway host are directly con-
nected through a shared Ethernet switch and the gateway is
also the termination point of a GRE-tunneled /16 network
prefix (64k IP addresses) nestled within an active, opera-
tional network. We use live traffic to this network as input
to the honeyfarm.

5.2 Multiplexing Address Space
A key factor that determines the scalability of a honey-

farm is the number of honeypots required to handle the
traffic from a particular IP address range. For example,
a Potemkin honeyfarm serving all of a /8 network would
naively require over 16 million honeypot VMs to cover the
entire address range. However, in practice a honeyfarm can
multiplex honeypot VMs across a given address space over
time since not every IP address receives traffic simultane-
ously. As a result, a honeyfarm only needs sufficient VM
resources to serve the peak number of active IP addresses at
any particular point in time.

The number of honeypot VMs required depends on two
properties: the address space locality of traffic within a lim-
ited time window and the lifetime of VMs handling traffic.
If the traffic for a monitored address space has good locality,
i.e., traffic is destined to only a small fraction of the address
space in a limited time interval, then a honeyfarm requires
fewer VMs to serve the traffic. However, if the traffic has
poor spatial locality, then more VMs will be required. Fi-
nally, VM lifetime is also important since the longer a VM
persists on average, the more additional VMs are required
to service a given traffic load.

To evaluate address space multiplexing, we simulate a
honeyfarm handling measured traffic to a /16 network. For

 1

 10

 100

 1000

 10000

 100000

 0  500  1000  1500  2000  2500  3000  3500

N
um

be
r 

of
 r

eq
ui

re
d 

V
M

s

time (seconds)

Figure 4: Required number of VMs active in re-
sponse to all measured traffic from a /16 network
when VMs are aggressively recycled after 500 mil-
liseconds of inactivity. Traffic is from the one
hour period starting Monday, March 21, 2005 04:05
GMT.

this traffic workload, we estimate the number of active hon-
eypot VMs required to process the traffic workload. We cre-
ate an active VM when the honeyfarm receives a packet to
a new destination IP address. This VM stays active so long
as it receives traffic and terminates only if no new packets
arrive for N seconds. Thus, over time, the number of active
VMs in the honeyfarm reflects the IP address space utiliza-
tion and determines the extent to which the honeyfarm can
multiplex VM resources across the address space.

During a measured hour period, Figure 4 shows the num-
ber of active VMs required as a function of time when using
an aggressive 500 millisecond inactivity timeout for VMs.
While the average number of active VMs is 58, peak activ-
ity requires 13,614 VMs. Trace examination showed that the
peaks were the result of wide-scale port scanning by a small
number of source IP addresses — motivating the need for
the “scan filtering” described previously (see Section 4.1).

Figure 5 shows the maximum and average number of si-
multaneously active VMs as a function of the VM inactivity
timeout with and without scan filtering in place. The scan
filter reduces the number of simultaneous VMs by over two
orders of magnitude for VM timeouts up through 60 sec-
onds. Even with five-minute timeouts, a honeyfarm would
only require 1,745 VMs with the scan filter, whereas 62,960
(out of 65,536) would be required without filtering. Using
a 60-second timeout, a honeyfarm can multiplex 156 des-
tination addresses per active VM instance even during the
worst-case period.

5.3 Multiplexing Honeyfarm Servers
The second key factor that determines the scalability of

Potemkin is the number of VMs that each physical honey-
farm server can simultaneously multiplex. Three overheads
determine the scalability of a honeyfarm server: the memory
overhead required by honeypot VMs, the CPU overhead re-
quired to create honeypot VMs, and the CPU utilization of
honeypot VMs responding to traffic. In the following series
of experiments, we evaluate the effectiveness of delta virtu-
alization and flash cloning in reducing the memory and time



 1

 10

 100

 1000

 10000

 100000

 1  10  100

N
um

be
r 

of
 r

eq
ui

re
d 

V
M

s

VM inactivity timeout

All packets
Scan filter

(a) Maximum number of simultaneous VMs

 1

 10

 100

 1000

 10000

 100000

 1  10  100

N
um

be
r 

of
 r

eq
ui

re
d 

V
M

s

VM inactivity timeout

All packets
Scan filter

(b) Average number of simultaneous VMs

Figure 5: Required number of active VMs as a function of the VM inactivity timeout, i.e., the amount of
time a VM waits for additional network traffic since the last seen packet. Traffic is from a /16 network during
the 48 hour period starting Sunday, March 21, 2005 at 08:05 GMT.

overheads, and quantify CPU utilization for a simple hon-
eypot VM responder. Together, our results suggest that a
honeyfarm server can multiplex hundreds of honeypot VMs
on a single physical machine.

5.3.1 Delta Virtualization
Delta virtualization has the potential to substantially re-

duce the memory overhead of a cloned VM to just the set of
pages the VM modifies after cloning. The number of dirty
pages depends on which service executes in response to the
first, or trigger, packet and how long the VM executes the
service before terminating. This number limits overall scal-
ability since a given honeyfarm server is only effective when
it is able to maintain the working sets of cloned VMs entirely
in physical memory.

To approach an upper bound on the number of VMs we
can instantiate on a physical machine, we created as many
clone VMs as possible within Xen resource constraints. The
reference VM was a 128 MB Linux image, and each clone
was a copy-on-write fork of the reference. Clones ran a pro-
cess spinning in an infinite loop. We found that we could
clone 116 VMs before exhausting the Xen heap, which is
used to store important VM metadata but is presently lim-
ited to about 10 MB in size. In this experiment, Domain-0
consumed 512 MB of memory, the reference image consumed
128 MB, and the 116 clones together consumed 98 MB. On
our 2 GB platform, 1310 MB of memory remained unallo-
cated. Extrapolating past the current Xen heap limitation,
such a machine could support approximately 1500 VMs be-
fore exhausting memory resources.

To estimate the memory scalability enabled by delta virtu-
alization under application scenarios, we measured the mem-
ory overhead of three simple services running in a cloned
VM. First, we configured Potemkin to clone VMs with the
Apache Web server running, then requested a static web
page from the VM. In separate experiments, we also con-
nected via telnet into the machine to perform some simple
file operations, and pinged the machine for approximately

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  20  40  60  80  100  120  140

P
riv

at
e 

P
ag

es
 In

st
an

tia
te

d 
(K

B
)

Time (s)

Telnet Connection
Web Page Fetch

Ping

Figure 6: Memory modified by a cloned VM opening
a telnet session, serving a Web page, and responding
to pings. Activity for telnet begins at 40 sec, and
activity for Web page fetch and ping begins at 70
sec. Until then, the VMs gradually modify pages
while idling.

one minute. In each case, we tracked the number of pages
not shared with the reference VM over time.

Figure 6 shows the memory modified by the cloned VM
as a function of time. In the Web page experiment, the
clone VM modifies 2.7 MB of memory when it finishes re-
turning the requested page. Similarly, the telnet experiment
modifies 3.7 MB and the ping experiment modifies 2.1 MB.
Note that in the Web and ping experiments, the application
activity occurs only after 70 seconds, while in in the tel-
net experiment, activity occurs roughly 40 seconds into the
measurement. Until then, the VMs are idle and thus page
modification during this period (1.1–1.8 MB) primarily re-
flects the activity of other OS processes and daemons, and
not the application itself.



Flash Cloning

Operation Fork Prealloc
Messaging/Python 124.5 124.7

Prepare/Copy memory pages 11.1 —
Sync with Xenstore DB 66.3 —

Create devices 149.2 —
Other management structures 11.4 —

Unpause 0.9 0.9
Raise interface 15.0 53.0

Configure IP 142.8 147.3
Total 521.2 325.9

VM Teardown

Operation Fork Prealloc
Messaging/Python 116.0 116.6

Release devices 181.0 169.9
Release memory pages 7.0 7.9

Lower interface 10.6 10.6
Sync with Xenstore DB 0.9 0.7

Total 315.5 305.7

Table 1: Time breakdown for flash cloning with
delta virtualization (Fork), and cloning preallocated
domains (Prealloc). All times are in milliseconds.

Together, these results indicate that delta virtualization
has the potential to provide excellent memory scalability.
On a machine with 2 GB of physical memory, for example,
a honeyfarm server can clearly accommodate the memory
demands of hundreds of distinct VMs, even when executing
simple services.

5.3.2 Flash Cloning
Next we evaluate the execution overhead to perform flash

cloning and discuss our efforts to further improve its perfor-
mance. Two driving factors motivate this concern. First,
the time to flash clone a VM fundamentally determines the
response time of the cloned VM. Until the cloned VM starts
executing, it cannot respond to the trigger packet. As a
result, if the time to clone a VM is very long (e.g., many
seconds), the honeyfarm may miss activity of interest; a
malicious host probing the honeyfarm, for example, may
timeout and decide that no host exists at that destination
address. Second, the time overhead of flash cloning impacts
the number of VMs a physical machine can multiplex with-
out degrading the performance of those VMs: the time to
clone a VM is CPU overhead that could otherwise be used
by already executing VMs. Since a Potemkin server will be
cloning VMs continuously in steady state, CPU overhead
required to clone VMs directly reduces the number of VMs
that can efficiently execute on the machine. Reducing the
time to clone a VM will therefore improve utilization of Po-
temkin servers and the number of VMs they can multiplex.

Table 1 shows the time to clone a 128 MB Linux VM
using flash cloning with delta virtualization (“Fork”), and
cloning preallocated domains (“Prealloc”). The total time
measures the time from sending a ping packet to a Potemkin
server until the time of receiving a response packet from a
cloned VM on that server. For the degree of functionality
instantiated, our current Potemkin implementation is able
to create VMs relatively quickly: it flash clones a new VM,
runs it, and generates a response packet in 521 ms. Subse-
quent packets to the same VM incur no such delay. Tearing

down VMs is relatively costly at 315 ms, but we have yet to
start optimizing this operation.

In steady state, a Potemkin server will clone and retire
VMs continuously. To avoid repeating the same work, an
obvious optimization is to recycle VM data structures rather
than tear them down and reallocate them. While we do
not yet perform this optimization, an upper bound on its
benefits is represented by the “Prealloc” column in Table 1.
In this scenario, domain data structures are preallocated and
preinitialized, thus reflecting the potential benefits of data
structure reuse. While this optimization reduces cloning
overhead to 326ms, a substantial improvement, significant
unnecessary overheads still remain.

Examining flash cloning overhead in more detail, we break
down the flash cloning times into various subcomponents
according to major steps shown in Figure 2. The total
time in Table 1 corresponds to the time to perform the en-
tire sequence in the figure. The time breakdowns of “Pre-
pare/Copy memory pages” through “Unpause” in the table
comprise the “clone VM” step in the figure. “Raise inter-
face” and “Configure IP” comprise the “change IP to A”
step. “Messaging/Python” comprises the remaining steps
in the timeline, covering communication overhead among
different entities on the server. From these breakdowns,
we observe that the time overhead is distributed among a
number of different operations. We are addressing all of
them in further optimization, starting with recycling since
it eliminates needless work. Device creation during flash
cloning and release during teardown are obvious candidates
for recycling, as are other management and memory data
structures as well as configurations communicated through
the Xenstore DB. We are reducing messaging and control
overheads through general improvements to the Xen config-
uration tools (particularly eliminating the use of Python) as
well as optimizations specifically in support of flash cloning.
Finally, we are investigating techniques to better prime ref-
erence images for configuring their network identity when
cloned. We believe that true flash cloning overheads should
ultimately be well under 30ms.

5.3.3 CPU Utilization
Delta virtualization reduces the memory overhead of VM

clones by orders of magnitude, and flash cloning correspond-
ingly reduces the time overhead of creating honeypot VMs.
The last factor that determines the number of VMs a honey-
farm server can successfully multiplex is the CPU utilization
of responding honeypot VMs. Putting aside the overhead to
create new VMs, if the combined utilization of existing VMs
exceeds the honeyfarm server CPU capacity, then fidelity
will suffer as all honeypots grind to a crawl.

Fortunately, due to the nature of typical honeypot traffic
(scans, probes, etc.), most honeypot VMs consume minimal
overhead. As a baseline, we measured the CPU utilization
of a honeypot VM responding to an HTTP request for the
top-level page of a default Apache server, in addition to idle
CPU usage of the VM during periods of Web server I/O.
The utilization was below 0.01%, indicating that memory
resources and cloning overhead will remain the primary re-
source bottleneck for multiplexing honeypot VMs on honey-
farm servers. We note that these results represent a common
case when incoming packets perform harmless operations
and the server can retire the VM quickly. If a VM becomes
infected, however, it will consume additional resources.



5.4 Gateway
The gateway is an important component of our honeyfarm

architecture, since it globally manages honeyfarm resources
in response to both external inbound traffic and internal
traffic. As a result, the scalability of the honeyfarm ulti-
mately depends on the gateway’s behavior. In turn, the
scalability of the gateway depends upon the rate at which
it can forward traffic and the amount of state required to
implement its forwarding and containment policies.

To evaluate these limits, we transmitted packets to the
gateway at a given rate and measured the rate at which
the gateway was able to deliver the packets as output. In
our current implementation, the delivered forwarding rate
depends heavily on the locality of the packet stream. For
packets hitting in the flow cache, the gateway is able to
deliver over 160,000 packets per second. However, random
traffic can reduce this rate by a factor of six (28,000 packets
per second). While this is still easily sufficient to support the
peak delivery rates from Section 5.2, additional optimization
may be required to support still-larger deployments.

The gateway also maintains tables to track active map-
pings of flows to honeypot VMs, and the history of recent
sources to destinations communications for implementing
containment policies. Entries in these tables require roughly
256 bytes per flow or 256 MB to support a million simul-
taneous flows. As a result, the gateway will easily scale to
very large address ranges as a single central node.

5.5 Live Deployment
We have very preliminary experience combining all of the

components together into a live honeyfarm deployment. Us-
ing a cluster of ten servers, we configured one as the Po-
temkin gateway and the remaining nine as Potemkin VMM
servers. We directed the traffic from our tunneled /16 net-
work to the gateway, which then dispersed the traffic among
the servers. For a representative 10-minute period, over
2,100 VMs were dynamically created in response to external
packets and responded in kind. Anecdotally, looking at the
packets exchanged in more detail, we observed the expected
common behavior. TCP SYN packets to live services es-
tablished TCP connections, while those addressed to closed
ports generated RSTs in response. We received background
Slammer infection attempts (engendering an ICMP port un-
reachable response from our VMs since they are not config-
ured to provide service on UDP port 1434). In fairness, we
are far from production use in our current deployment and
we continue to debug various crashes, overloads, and hangs.
However, our initial experience is promising and reinforces
our position that it is possible to create honeyfarms with
both scale and fidelity.

6. LIMITATIONS AND CHALLENGES
Computer security is a field fraught with “almosts” and

“gotchas”. Few technologies can address all threats com-
pletely or precisely. Indeed, honeypots are no exception to
this rule, nor does our approach avoid introducing its own
unique challenges. In this section we briefly discuss some
limitations of our work and how they might be addressed in
future work by our group or others.

6.1 Attracting Attacks
Chief among these limitations is the assumption that a

honeypot will attract all traffic of interest. A typical hon-

eypot’s only salient connection to the rest of the Internet is
its IP address and, thus, it will tend to only receive traffic
from randomly targeted attacks. In fact, many non-random
attack vectors, such as peer-to-peer, instant messenger, and
e-mail, spread along application-specific topologies. To at-

tract attacks on these systems requires additional mecha-
nisms to connect the honeypot into these application-specific
networks. In some cases, such as for peer-to-peer appli-
cations, the application itself provides a connection; many
common applications, however, do not (e.g., e-mail). In-
deed, to capture e-mail viruses, a honeypot must possess an
e-mail address, must be scripted to read mail (potentially ex-
ecuting attachments like a naive user) and, most critically,
real e-mail users must be influenced to add the honeypot to
their address books. Passive malware (such as many spy-
ware applications) may require a honeypot to generate ex-
plicit requests and narrowly focused malware (e.g., targeting
only financial institutions) may carefully section their vic-
tims and never touch a large-scale honeyfarm. In each of
these cases there are at least partial solutions (e.g., Wang
et al.’s HoneyMonkey system incorporates a Web crawler to
gather candidate spyware applications [35]) but they require
careful engineering to truly mimic the vulnerable character-
istics of the target environment.

6.2 Honeypot Detection
A related problem is that attackers may attempt to ex-

plicitly detect that they are running in a honeypot envi-
ronment and modify their behavior to evade detection or
analysis. Indeed, this is not a hypothetical threat: sev-
eral modern bots (e.g., the Agobot strains) actively detect
and react to VMware-based execution environments. Cam-
ouflaging a honeypot against these threats presents several
challenges. First, the local execution environment must be
completely virtualized to prevent detection. While this is
impossible today in the Intel x86 architecture, the next gen-
eration of Intel and AMD processors offer extensions that
make complete functional virtualization possible. However,
even with this processor-level support, effectively camou-
flaging the overall platform characteristics (e.g., presenting
a believable and consistent description of local devices) can
be quite difficult. Moreover, even if a honeypot’s execution
environment is perfectly virtualized, an attacker may still be
able to infer its presence via external side-effects. For exam-
ple, virtualization typically incurs overhead and, while local
time can be dilated to compensate, external time will still
advance on schedule. Thus an attacker could detect a vir-
tualized honeypot by executing a long series of instructions
with high virtualization overhead and comparing the elapsed
time to some external Internet reference (e.g., via the net-
work time protocol). As well, an attacker may exploit any
communication barriers imposed by the containment process
to infer the presence of a honeypot. For instance, if contain-
ment prevents outbound infection attempts to a third-party
host, an attacker may issue such an attempt to detect the
presence of a likely honeypot. Finally, if a honeypot uses
a static range of IP addresses, then long-term testing — of
the variety described here — could be used to populate a
blacklist avoided by future malware.

Again, each of these challenges has corresponding engi-
neering approaches. For example, honeyfarm blacklists can
be thwarted by using dynamic address assignment (e.g.,
temporarily redirecting the unused addresses from a DHCP



server) rather than building honeyfarms from static swaths
of contiguous prefixes. Similarly, many network-based “fin-
gerprints” can be hidden by emulating ambiguities imposed
by common network elements, such as firewalls, network ad-
dress translators, shared Wi-Fi, variable delay cable modems,
etc. Each of these situations, however, requires a unique
and ad hoc solution. Ultimately, it remains unclear if it is
possible to perfectly hide a honeyfarm from a skilled and
determined attacker.

6.3 Denial-of-Service
Finally, the scalability of Potemkin is predicated on the

assumption that the address space is sparsely utilized over
short time scales and that VMs themselves need only live
for short periods of time. However, an attacker with some
knowledge of the honeyfarm’s location could violate these as-
sumptions and overwhelm the system. For example, by blan-
keting a honeyfarm’s address space with seemingly distinct
attacks, an attacker may exceed the capacity of the physi-
cal infrastructure. Worse, successful attacks could then at-
tempt to dirty large numbers of pages to minimize the value
of copy-on-write sharing. Finally, if attackers are is privy to
the detection algorithms and policy used to decide how long
to maintain a given VM, they can artificially extend the VM
lifetime and therefore exhaust shared processor and memory
resources. As with all denial-of-service vulnerabilities, these
require careful resource management to mitigate. However,
resource management requires the ability to “name” differ-
ent users — in this case different attacks. Thus, important
capabilities are identifying identical or isomorphic attacks
and limiting their resource consumption.

As with all security technologies, we expect that the im-
portance of these additional threats will depend largely on
the value of honeypots themselves. If honeypots are a sig-
nificant deterrent, then attackers will be motivated to evade
or overwhelm them — once again mirroring the classic arms
race between espionage and counter-espionage.

7. CONCLUSION
Traditionally, honeypots have been used to detect and

observe the behavior of worms, viruses, and botnets. Cur-
rent deployments have either been limited to running high-
fidelity honeypots over a small number of IP addresses, or
low-fidelity honeypots over a large number of IP addresses.
In this paper, we propose a honeyfarm architecture that
achieves both goals: it supports high-fidelity honeypots to
capture attacker behavior at scales that are orders of magni-
tude greater than previous high-fidelity honeypot approaches.
We have built a prototype honeyfarm system, called Po-

temkin, that exploits virtual machines, late binding of re-
sources, and aggressive memory sharing to achieve this goal.
Late binding of virtual machines to IP addresses enables Po-
temkin to monitor the steady-state attack traffic of an IP
address space several orders of magnitude larger than the
available number of physical honeyfarm servers. Aggressive
memory sharing and efficient VM creation enable our de-
sign to support potentially hundreds of live VMs on each of
these servers. We evaluate our architecture and the Potem-
kin prototype honeyfarm implementation, and argue that it
is practical to deploy a honeyfarm that offers high-fidelity
host emulation for hundreds of thousands of IP addresses
while using only tens of physical servers.

8. ACKNOWLEDGMENTS
This work and this paper would not have been possible

without significant efforts of others. First we would like to
thank the Xen team in its entirety for the Xen platform it-
self — without which we would never have considered this
line of research. We are particularly grateful to Michael Fet-
terman for his insights concerning the integration of copy-
on-write into shadow-mode page tables, Andrew Warfield
for his skunkworks efforts to help us integrate Parallax, and
Ian Pratt for his overall support and guidance. Steve Hand
was our shepherd and was extremely patient with our “last-
minute” research efforts. George Dunlap and Dominic Luc-
chetti of the University of Michigan helped us to get Xen
running in translated shadow mode. Back at UCSD Marvin
McNett kept the honeyfarm running in spite of our move
across campus, and Colleen Shannon kept the packets flow-
ing. Michelle Panik kept us organized and grammatical.
Our ICSI counterparts in CCIED, particularly Vern Pax-
son, Nick Weaver and Weidong Cui, provided frequent useful
feedback on our work. We thank the anonymous reviewers
for their comments, and Bill Cheswick for his unique contri-
bution. Finally, we would like to specially acknowledge our
co-author Alex Snoeren who, in the week before his wed-
ding, proved to our students that faculty members can still
hack.

Support for this work was provided by the National Sci-
ence Foundation under CyberTrust Grant No. CNS-0433668
and Trusted Computing Grant No. CCR-0311690, a gift
from Microsoft Research, and the UCSD Center for Net-
worked Systems.

9. REFERENCES
[1] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and

D. Watson. The Internet Motion Sensor: A Distributed
Blackhole Monitoring System. In Proceedings of the 12th
Annual Network and Distributed System Security
Symposium (NDSS ’05), San Diego, CA, Feb. 2005.

[2] M. Bailey, E. Cooke, F. Jahanian, N. Provos, K. Rosaen,
and D. Watson. Data Reduction for the Scalable
Automated Analysis of Distributed Darknet Traffic. In
Proceedings of the USENIX/ACM Internet Measurement
Conference, New Orleans, LA, Oct. 2005.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the Art of Virtualization. In Proceedings of the 19th ACM
Symposium on Operating System Principles (SOSP),
Bolton Landing, NY, Oct. 2003.

[4] P. Chen, A. Joshi, S. King, and G. Dunlap. Detecting Past
and Present Intrusions through Vulnerability-specific
Predicates. In Proceedings of the 20th ACM Symposium on
Operating System Principles (SOSP), Brighton, UK, Oct.
2005.

[5] B. Cheswick. An Evening with Berferd In Which a Cracker
is Lured, Endured, and Studied. In Proceedings of the
Winter Usenix Conference, San Francisco, CA, 1992.

[6] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live Migration of
Virtual Machines. In Proceedings of the 2nd
ACM/USENIX Symposium on Networked Systems Design
and Implementation (NSDI), Boston, MA, May 2005.

[7] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-End
Containment of Internet Worms. In Proceedings of the 20th
ACM Symposium on Operating System Principles (SOSP),
Brighton, UK, Oct. 2005.

[8] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine,
and H. Owen. HoneyStat: Local Worm Detection Using



Honeypots. In In Recent Advances In Intrusion Detection
(RAID) 2004, Sept. 2004.

[9] D. Ellis, J. Aiken, K. Attwood, and S. Tenaglia. A
Behavioral Approach to Worm Detection. In Proceedings of
the ACM Workshop on Rapid Malcode (WORM), Fairfax,
VA, Oct. 2004.

[10] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina.
RFC 2784 - Generic Routing Encapsulation (GRE). RFC
2784, Mar. 2000.

[11] T. Garfinkel and M. Rosenblum. A Virtual Machine
Introspection Based Architecture for Intrusion Detection.
In Proceedings of the 10th Annual Network and Distributed
System Security Symposium (NDSS ’03), San Diego, CA,
Feb. 2003.

[12] Honeynet Project. Know Your Enemy: Learning about
Security Threats. Pearson Education, Inc., Boston, MA,
second edition, 2004.

[13] Honeynet Project. Know Your Enemy: Tracking Botnets.
http://www.honeynet.org/papers/bots/, Mar. 2005.

[14] Intel. Virtualization Technology.
http://www.intel.com/technology/computing/vptech/.

[15] X. Jiang and D. Xu. Collapsar: A VM-Based Architecture
for Network Attack Detention Center. In Proceedings of the
USENIX Security Symposium, San Diego, CA, Aug. 2004.

[16] H.-A. Kim and B. Karp. Autograph: Toward Automated,
Distributed Worm Signature Detection. In Proceedings of
the USENIX Security Symposium, San Diego, CA, Aug.
2004.

[17] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router. ACM Transactions
on Computer Systems, 18(3):263–297, Aug. 2000.

[18] C. Kreibich and J. Crowcroft. Honeycomb — Creating
Intrusion Detection Signatures Using Honeypots. In
Proceedings of the 2nd ACM Workshop on Hot Topics in
Networks (HotNets-II), Cambridge, MA, Nov. 2003.

[19] G. R. Malan, D. Watson, F. Jahanian, and P. Howell.
Transport and Application Protocol Scrubbing. In
Proceedings of IEEE Infocom Conference, pages 1381–1390,
Tel-Aviv, Isreal, Mar. 2000.

[20] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,
and N. Weaver. Inside the Slammer Worm. IEEE Security
and Privacy, 1(4):33–39, July 2003.

[21] D. Moore, C. Shannon, and J. Brown. Code-Red: a case
study on the spread and victims of an Internet worm. In
Proceedings of the ACM/USENIX Internet Measurement
Workshop (IMW), Marseille, France, Nov. 2002.

[22] D. Moore, C. Shannon, G. Voelker, and S. Savage. Network
telescopes: Technical report. Technical Report
CS2004-0795, UCSD, July 2004.

[23] D. Moore, G. M. Voelker, and S. Savage. Inferring Internet
Denial of Service Activity. In Proceedings of the USENIX
Security Symposium, Washington, D.C., Aug. 2001.

[24] C. Nachenberg. From AntiVirus to AntiWorm: A New
Strategy for A New Threat Landscape. Invited talk at 2004
ACM Worm, http://www.icir.org/vern/worm04/carey.ppt.

[25] J. Newsome and D. Song. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Generation
of Exploits on Commodity Software. In Proceedings of the
12th Annual Network and Distributed System Security
Symposium (NDSS ’05), San Diego, CA, Feb. 2005.

[26] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and
L. Peterson. Characteristics of Internet Background
Radiation. In Proceedings of the USENIX/ACM Internet
Measurement Conference, Taormina, Sicily, Italy, Oct.
2004.

[27] N. Provos. A Virtual Honeypot Framework. In Proceedings
of the USENIX Security Symposium, San Diego, CA, Aug.
2004.

[28] J. Rabek, R. Khazan, S. Lewandowski, and
R. Cunningham. Detection of Injected, Dynamically
Generated, and Obfuscated Malicious Code. In Proceedings
of the ACM Workshop on Rapid Malcode (WORM),
Washington, D.C., Oct. 2003.

[29] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated
Worm Fingerprinting. In Proceedings of the 6th
ACM/USENIX Symposium on Operating System Design
and Implementation (OSDI), San Francisco, CA, Dec. 2004.

[30] D. Song, R. Malan, and R. Stone. A Snapshot of Global
Internet Worm Activity. Technical report, Arbor Networks
Technical Report, Nov. 2001.

[31] C. Stoll. The Cuckoo’s Egg. Pocket Books, New York, NY,
1990.

[32] Symantec. Decoy Server Product Sheet.
http://www.symantec.com/.

[33] S. Venkataraman, D. Song, P. Gibbons, and A. Blum. New
Streaming Algorithms for Superspreader Detection. In
Proceedings of the 12th Annual Network and Distributed
System Security Symposium (NDSS ’05), San Diego, CA,
Feb. 2005.

[34] C. A. Waldspurger. Memory Resource Management in
VMware ESX Server. In Proceedings of the 5th
ACM/USENIX Symposium on Operating System Design
and Implementation (OSDI), Boston, MA, Dec. 2002.

[35] Y.-M. Wang, D. Beck, X. Jiang, and R. Roussev.
Automated Web Patrol with Strider HoneyMonkeys:
Finding Web Sites that Exploit Browser Vulnerabilities.
Technical Report MSR-TR-2005-72, Microsoft Research,
Aug. 2005.

[36] A. Warfield, R. Ross, K. Fraser, C. Limpach, and S. Hand.
Parallax: Managing Storage for a Million Machines. In
Proceedings of the 10th USENIX Workshop on Hot Topics
in Operating Systems (HotOS-X), Santa Fe, NM, June
2005.

[37] N. Weaver, S. Staniford, and V. Paxson. Very Fast
Containment of Scanning Worms. In Proceedings of the
USENIX Security Symposium, San Diego, CA, Aug. 2004.

[38] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and
Performance in the Denali Isolation Kernel. In Proceedings
of the 5th ACM/USENIX Symposium on Operating System
Design and Implementation (OSDI), Boston, MA, Dec.
2002.

[39] J. Xiong. ACT: Attachment Chain Tracing Scheme for
Email Virus Detection and Control. In Proceedings of the
ACM Workshop on Rapid Malcode (WORM), Fairfax, VA,
Oct. 2004.

[40] V. Yegneswaran, P. Barford, and D. Plonka. On the Design
and Use of Internet Sinks for Network Abuse Monitoring.
In Proceedings of Symposium on Recent Advances in
Intrusion Detection (RAID), Sept. 2004.


