Melting properties of the smelt, carry-over particles and superheater deposits in the recovery boiler

Daniel Lindberga, Rainer Backmana,b, Patrice Chartrandc, Mikko Hupaa,

a) Åbo Akademi Process Chemistry Centre
b) Energy Technology and Thermal Process Chemistry
Umeå University, Sweden
c) Centre de Recherche en Calcul Thermochimique, Montréal, Canada
Outline

- Thermodynamic modeling of molten alkali salts in the pulp and paper industry
 - Purpose and goal
 - Historical developments
 - Thermodynamic model

- Recovery boiler smelt
 - Polysulfides

- Carry-over particles and superheater deposits
 - Pyrosulfates

- Summary
Thermochemistry and melting properties of inorganic compounds in black liquor conversion processes

The formation and the existence of molten alkali salts is of great importance in the recovery boiler

- Behavior of the smelt
- Formation of sticky deposits on superheaters
- Corrosion of alloys in contact with a melt
- Important reactions involving a molten phase

\[
\text{Na}_2\text{SO}_4(l) + (2+2X) \text{C}(s) \rightleftharpoons \text{Na}_2\text{S}(l) + 4X \text{CO}(g) + (2-2X) \text{CO}_2(g)
\]

\[
\text{Na}_2\text{CO}_3(l) + \text{NaBO}_2(l) \rightleftharpoons \text{Na}_3\text{BO}_3(l) + \text{CO}_2(g)
\]
GOAL

To predict the melting behaviour for the Na\(^+\), K\(^+\)/CO\(_3\)\(^{2-}\), S\(^{2-}\), SO\(_4\)\(^{2-}\), Cl\(^-\), S\(_2\)O\(_7\)\(^{2-}\), S\(_n\)\(^{2-}\) system in the recovery boiler at varying Temperature, Pressure and Composition

- Experiments
 \[\epsilon\epsilon + \text{set of discrete data}\]

- Empirical equations (curve fits of experiments)

- Thermodynamic models

\[G = f(T, P, n_{Na_2S}, n_{Na_2SO_4}, n_{Na_2CO_3}, n_{NaCl} \ldots)\] (For every phase)

\[H = \left(\frac{\partial G}{\partial T}\right)_{P, n_i}\]

\[S = -\left(\frac{\partial G}{\partial T}\right)_{P, n_i}\]

\[\mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{T, P, n_j, n_k}\]

\[\mu_i - \mu_i^0 = RT \ln a_i\]
Thermodynamic modelling
Developments & Highlights (1)

• 1960-1964: Erik Rosén
 • Computerized calculations of multicomponent/multiphase equilibrium of pressurized black liquor gasification. Activity coefficients for Na$_2$CO$_3$-Na$_2$S

• 1984: Pejryd & Hupa
 • Equilibrium modeling of furnace gas and smelt bed
 • Non-ideal interactions for liquid Na$_2$CO$_3$-Na$_2$S

• 1988-1990: Sangster & Pelton
 • Thermodynamic model of non-ideal liquid and solid solutions of alkali salts without sulfide
 • Na$^+$,K$^+$/CO$_3^{2-}$, SO$_4^{2-}$, Cl$^-$, OH$^-$
Thermodynamic modelling
Developments & Highlights (2)

• 1984→present: Backman et al.
 • Thermodynamic model for the recovery boiler smelt
 • $\text{Na}^+, \text{K}^+/\text{S}^2-$, $\text{S}_2\text{O}_7^{2-}$, CO_3^{2-}, SO_4^{2-}, Cl^-, OH^-
 • Equilibrium modeling of recovery boiler chemistry, melting properties of superheater deposits, pressurized black liquor gasification etc.

• 2000: Pelton, Chartrand and Eriksson
 • Modified Quasichemical Model in Quadruplet Approximation
 • Thermodynamic model developed for complex molten salts
 • Large amount of salt systems have been modelled and multicomponent phase equilibrium is accurately predicted
Thermodynamic model for the molten phase

- New thermodynamic model - Modified Quasichemical Formalism in the quadruplet approximation
- Based on molten salt theory and takes into account short-range ordering (on molecular level) in the liquid
- Previous models for molten salts can be incorporated → previous optimized binary systems can be directly incorporated
- New components can easily be incorporated in the model
 - Ca^{2+}, Mg^{2+}, Heavy metals etc.
Procedure for thermodynamic modelling

• Evaluation of experimental thermodynamic data for pure phases and experimental phase equilibrium data

• Choice of thermodynamic model (mathematical description) for the solution properties of solutions (liquid, solid solutions, gas)

• Optimization of solution interaction parameters and unknown or uncertain thermodynamic data of pure phases using experimental data as input

• Calculation of phase equilibrium and comparison with experimental equilibrium data (FactSage™)
Thermodynamic modelling

- A good thermodynamic model/database for solids and liquid should:
 - predict the phase equilibrium (=melting properties) of binary and higher order systems within the uncertainties of experimental investigations of these systems
 - give good predictions of the phase equilibrium for conditions where no experimental data exist

- NOTE! All experimentally determined melting data are NOT equilibrium data

- Examples of non-equilibrium phenomena:
 - Supercooling of liquids
 - Equilibration of solid solutions
Examples of modelled subsystems relevant for the recovery boiler
Recovery Boiler Smelt

- The liquid phase in the char bed consists mainly of Na$_2$CO$_3$, Na$_2$S and Na$_2$SO$_4$, with minor amounts of other K, Cl and S species
- Existence of polysulfides has been shown to reduce the first-melting temperature of the smelt
Na$_2$S - Na$_2$CO$_3$

Na$_2$S - Na$_2$SO$_4$

Na$_2$CO$_3$ - Na$_2$SO$_4$
Na$_2$S-K$_2$S-S

254 °C

475 °C Na$_2$S$_2$

1175 °C

K$_2$S$_2$ 491 °C

1175 °C

948 °C
The diagram represents the Na$_2$S-K$_2$S-S system. The lowest melting point is at 73 °C, as indicated by the red line. The diagram is a ternary phase diagram showing the mole fractions of Na$_2$S, K$_2$S, and S, with isotherms marked at various temperatures.
Melting properties of carry-over particles and superheater deposits

- The liquid phase is of great importance for deposit formation on superheaters and for the corrosion of superheaters.

- Deposits are generally consist of Na\(^+\), K\(^+\), SO\(_4^{2-}\), CO\(_3^{2-}\), Cl\(^-\), S\(^2-\).

- Acidic sulfates (S\(_2\)O\(_7^{2-}\), HSO\(_4^-\)) may form in boiler bank and economizers.
Mixtures of NaCl, Na$_2$SO$_4$ and Na$_2$CO$_3$
$\text{Na}_2\text{SO}_4 - (0.35 \text{Na}_2\text{Cl}_2 + 0.65 \text{Na}_2\text{CO}_3)$

Bergman et al. (1958)

Liquid

Liquid+Na$_2$(SO$_4$,CO$_3$)

Åbo Akademi, unpubl.

NaCl+Na$_2$(SO$_4$,CO$_3$)
Na$_2$CO$_3$ - (0.85 Na$_2$SO$_4$ + 0.15 Na$_2$Cl$_2$)

Bergman et al. (1958)

Åbo Akademi, unpubl.
Mixtures of Na$^+$, K$^+$/SO$_4$$^{2-}$, Cl$^-$
(NaCl, KCl, Na$_2$SO$_4$, K$_2$SO$_4$)
Na$_2$SO$_4$-(KCl)$_2$ Solidus, T_0
Stability of alkali pyrosulfates

$\text{(Na}_2\text{S}_2\text{O}_7, \text{K}_2\text{S}_2\text{O}_7)$
The diagram illustrates the-phase boundary of the system K$_2$SO$_4$-K$_2$S$_2$O$_7$ at $p(O_2) = 0.05$ bar. The temperature range is from 200 to 800 °C along the x-axis, and the logarithm of the pressure of SO$_3$ (in bar) is plotted on the y-axis. The diagram includes the following phases:

- K$_2$S$_2$O$_7$(s)
- K$_2$SO$_4$(s)

At 150 ppm SO$_3$, the phase boundary is indicated.
(Na,K)$_2$SO$_4$ - (Na,K)$_2$S$_2$O$_7$
$p(O_2) = 0.05$ bar, $K/(Na+K)=0.1$

$\log_{10}(p(SO_3)/\text{bar})$ vs $T(°C)$

Liquid

50 ppm SO$_3$
Summary

The melting behaviour of multicomponent alkali salts in the recovery boiler has been modelled using a new thermodynamic model for the liquid phase.

The thermodynamic model can reproduce most experimental data of melting of the complex salts within error limits.