A Computationally Efficient Approach for Predicting NO$_x$ Emission Trends from Black Liquor Recovery Boilers

Anders Brink, Markus Engblom, Christian Mueller, Mikko Hupa
Åbo Akademi Process Chemistry Centre, Biskopsgatan 8, FI-20500
Turku, Finland
firstname.lastname@abo.fi
Outline

• Objective
• Background
• New NO$_x$ model
• Results
• Conclusions
• Acknowledgements
Objective

• A fast, reliable method for NO\textsubscript{x} emission prediction
• Use the fast Eddy Dissipation Combustion Model
• Utilized previously developed 2-step nitrogen chemistry
Background

Black Liquor (BL) Combustion

Stages of BL Combustion

- **Drying**
- **Pyrolysis/devolatilisation and gas combustion**
- **Char combustion**
- **Smelt**

Chemical reactions:

- $\text{O}_2 + \text{H}_2\text{O}$
- $\text{CO}_2 + \text{H}_2\text{O}$
- NH_3
- N_2
- CO_2
- NO
- N_2
- H_2O

NdM 2003
Background

Single droplet furnace example of experimental results

- CO₂ and NO linear dependent during devolatilization step
- NO release stop during char oxidation step
- NO released again during smelt oxidation
- Only 20-50% of N detected during experiments
Nitrogen release from droplet

- **NH$_3$**
- **N$_2$**
- **NO**

Background

- Fuel-N
- Char-N
- Small-N

- 35%
- 30%
- Ox
- Red
Nitrogen reactions at biomass firing conditions

Background

Coda Zabetta et al 2000
Background

Standard NO\textsubscript{x} model

2-step nitrogen chemistry

\[
\begin{align*}
\text{NH}_3 + \text{O}_2 & \rightarrow \text{NO} + \text{H}_2\text{O} + \frac{1}{2}\text{H}_2 \\
\text{NH}_3 + \text{NO} & \rightarrow \text{N}_2 + \text{H}_2\text{O} + \frac{1}{2}\text{H}_2
\end{align*}
\]

\[
\begin{align*}
r_1 &= 1.21 \cdot 10^8 T^2 e^{-8000/T} \left[\text{NH}_3 \right]^{0.5} \left[\text{O}_2 \right]^{0.5} \\
r_2 &= 8.73 \cdot 10^{17} T^{-1} e^{-8000/T} \left[\text{NH}_3 \right] \left[\text{NO} \right]
\end{align*}
\]

Standard EDCM

\[
\begin{align*}
\tilde{\omega}_1 &= \min \left[A \frac{\varepsilon}{k} \min \left[\frac{\tilde{Y}_{\text{NH}_3}}{r_{\text{NH}_3,R1}}, \frac{\tilde{Y}_{\text{O}_2}}{r_{\text{O}_2,R1}} \right] , \tilde{\omega}_{1,\text{chem}} \right] \\
\tilde{\omega}_2 &= \min \left[A \frac{\varepsilon}{k} \min \left[\frac{\tilde{Y}_{\text{NH}_3}}{r_{\text{NH}_3,R1}}, \frac{\tilde{Y}_{\text{NO}}}{r_{\text{NO,R1}}} \right] , \tilde{\omega}_{2,\text{chem}} \right]
\end{align*}
\]
Background

Test case
Joutseno boiler

• The mill has a pulp capacity of 600 000 ADt/year

• Recovery boiler – 3150 t/d (dry solids). Height 79 m.

• Strong and weak odorous gases (NCGs) burnt in recovery boiler
Reaction rate terms in the EDCM for \(\text{NH}_3 + \text{O}_2 \)

Background

EDCM
Turbulent mixing
Chemistry

![Graph showing reaction rate terms in the EDCM for \(\text{NH}_3 + \text{O}_2 \).](image)
New NO\textsubscript{x} model

• Mixing rate of NH\textsubscript{3} usually limiting

• Chemistry determines selectivity in NH\textsubscript{3} conversion

• Partly same (elementary) reactions
New NO\textsubscript{x} model

2-step nitrogen chemistry

\[
\begin{align*}
NH_3 + O_2 &\rightarrow NO + H_2O + \frac{1}{2}H_2 \\
NH_3 + NO &\rightarrow N_2 + H_2O + \frac{1}{2}H_2
\end{align*}
\]

\[r_1 = 1.21 \cdot 10^8 T^2 e^{-8000/T} [NH_3][O_2]^{0.5}[H_2]^{0.5}\]

\[r_2 = 8.73 \cdot 10^{17} T^{-1} e^{-8000/T} [NH_3][NO]\]

Modified EDCM

\[
\tilde{\omega}_1 = \min \left[A \frac{\tilde{\varepsilon}}{k} \min \left[\frac{\tilde{Y}_{NH_3}}{r_{NH_3,R1}}, \frac{\tilde{Y}_{O_2}}{r_{O_2,R1}} \right] \frac{r_1}{r_1 + r_2}, \tilde{\omega}_{1,\text{chem}} \right]
\]

\[
\tilde{\omega}_2 = \min \left[A \frac{\tilde{\varepsilon}}{k} \min \left[\frac{\tilde{Y}_{NH_3}}{r_{NH_3,R1}}, \frac{\tilde{Y}_{O_2}}{r_{O_2,R1}} \right] \frac{r_2}{r_1 + r_2}, \tilde{\omega}_{2,\text{chem}} \right]
\]
Results

NO mole fraction fields

<table>
<thead>
<tr>
<th></th>
<th>Standard EDCM</th>
<th>Modified EDCM</th>
<th>EDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 ppm</td>
<td>0.000300</td>
<td>0.000285</td>
<td>0.000270</td>
</tr>
<tr>
<td>122 ppm</td>
<td>0.000265</td>
<td>0.000255</td>
<td>0.000240</td>
</tr>
<tr>
<td>120 ppm</td>
<td>0.000225</td>
<td>0.000210</td>
<td>0.000200</td>
</tr>
</tbody>
</table>

25 ppm 122 ppm 120 ppm
Results

Reaction rate in the EDCM for NH$_3$ + NO

Standard EDCM Modified EDCM
Results

Reaction rate in the EDCM for NH$_3$ + NO

<table>
<thead>
<tr>
<th>Standard EDCM</th>
<th>Modified EDCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>kmol/m3s</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>0.082</td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>0.0016</td>
<td></td>
</tr>
<tr>
<td>0.00003</td>
<td></td>
</tr>
<tr>
<td>0.00025</td>
<td></td>
</tr>
<tr>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>4×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>1.6×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>6.3×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>2.5×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>1×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>4×10^{-7}</td>
<td></td>
</tr>
<tr>
<td>1.6×10^{-7}</td>
<td></td>
</tr>
<tr>
<td>6.3×10^{-8}</td>
<td></td>
</tr>
<tr>
<td>2.5×10^{-8}</td>
<td></td>
</tr>
<tr>
<td>1×10^{-8}</td>
<td></td>
</tr>
</tbody>
</table>
Results

Fraction of NH₃ consumed by the reaction between NH₃ and O₂.

\[f = \frac{\tilde{\omega}_{R1}}{\tilde{\omega}_{R1} + \tilde{\omega}_{R2}} \]
Results

NO mole fraction fields, modified EDCM

\(d_p = 4.5 \text{mm} \)

\(d_p = 3.5 \text{mm} \)

30% more \(\text{NH}_3 \) release in flight

122 ppm

131 ppm
Conclusions

Model overcomes severe shortcoming of standards
EDCM (Magnussen-Hjertager Model):

• Unreasonable situations where part of the chemistry is mixing limited and part chemically limited avoided

• Chemistry always influences results

• Do not provide a full nitrogen chemistry model

• Predicted temperature field favors NO formation
Acknowledgement

This work has been part of the activities of the Åbo Akademi Process Chemistry Centre funded by the Academy of Finland in their Centres of Excellence Program. Additional support obtained from our industrial partners Andritz Oy, Foster Wheeler Energia Oy, International Paper Inc., Kvaerner Power Oy, Oy Metsä-Botnia Ab and Vattenfall Utveckling AB and by the National Technology Agency of Finland in the research project ChemCom, is gratefully acknowledged.