Occurrence of Borate Autocausticizing Reaction During Black Liquor Combustion

H.N. Tran, J.Y. Kim, X. Man
University of Toronto
K. Kachestavani and C.M. Baiv
US Borax
Colloquium on Black Liquor combustion and Gasification,
Park City, UT, May 12-16, 2003

Borate Autocausticizing Principle

\[\text{Na}_2\text{CO}_3 \rightarrow \text{Na}_2\text{CO}_3 + \text{Heat} \rightarrow \text{CO}_2 \]

Sodium Metaborate

Na/B = 1

Caustic Borates

Na/B > 1

\[\text{Na}_2\text{CO}_3 + \text{H}_2\text{O} \rightarrow 2\text{NaOH} \]

Ritchie et al (1939)
Jansen's Concept (1978)

- CO₂
- Na₄B₂O₅
- Recovery Boiler → Dissolving Tank
- "Borated" Black Liquor (Na/:B = 2)
- Digester
- 2 NaBO₂ + 2 NaOH

Modified Concept (1998)

- CO₂
- Na₃BO₃
- Recovery Boiler → Dissolving Tank
- "Borated" Black Liquor (Na/:B > 3)
- Digester
- NaBO₂ + 2 NaOH
Technology Development

- Mill Trials
 - 1 BCTMP mill
 - 8 kraft mills
- R&D
 - University of Toronto
 - Åbo Akademi University
 - Western Michigan University
 - University of Maine
 - Econotech
 - US Borax

Main Findings

- The concept works!
- Success depends strongly on the degree of completion of the borate autocusticizing reaction in recovery boilers
- Borate autocusticizing reaction is mainly the formation reaction of Na_3BO_3
Na$_3$BO$_3$ Formation Reaction

- How Na$_3$BO$_3$ is formed in smelt is clear

- Possible Paths
 - NaBO$_2$ + Na$_2$CO$_3$ \rightarrow Na$_3$BO$_3$ + CO$_2$
 - NaBO$_2$ + 2NaOH \rightarrow Na$_3$BO$_3$ + H$_2$O
 - NaBO$_2$ + Na$_2$O \rightarrow Na$_3$BO$_3$

Reactivity Comparison

- NaBO$_2$ + NaOH @ 750°C
- NaBO$_2$ + Na$_2$CO$_3$ @ 800°C
- NaBO$_2$ + Na$_2$CO$_3$ @ 750°C
Recovery Boiler Char Bed Conditions

- Gas temperature:
 - 1000 – 1200°C

- Char bed temperature:
 - 800 – 1050°C

- Retention time:
 - ~ 20 minutes (5 to 60 minutes?)

Results of 1st Mill Trial at BCTMP Mill
Possible Sodium Borate Formation Mechanism in Recovery Boilers

$\text{Org-Na } \rightarrow \text{Na } \rightarrow \text{Na}_2\text{O } \rightarrow \text{NaBO}_2$

- Na_2O
- NaBO_2
- H_2O
- O_2, CO_2
- NaOH
- Na_2CO_3
- $\text{Na}_4\text{B}_4\text{O}_6$
- Na_2BO_3

Objective

- Examine the formation reaction of caustic sodium borate during black liquor combustion
U of T Entrained Flow Reactor

Experimental Procedure

- As-fired black liquor samples from three kraft mills
- Adding NaBO₂ to the black liquor sample
- Drying the “B”-black liquor, pulverizing and sieving the dried sample into different sizes
- Feeding the dried black liquor powder to the EFR and collecting the burned residue on a tray placed at the EFR exit
Experimental Procedure (2)

- Chemical analysis of residue
- Occurrence of reaction expressed as \% causticity of residue

\[
\% \text{ Causticity} = \frac{[\text{OH}]}{[\text{OH}]+[\text{CO}_2]} \times 100 \text{ as } \text{Na}_2\text{O}
\]

Effect of Borate Content in Black Liquor

EVL=680°C, Particle Size: 417-850 μm

Graph showing the effect of borate content on % causticity with respect to B/Na weight ratio.
Effect of Na₂SO₄
B/Na=0.048, Particle Size: 417-990 μm, Mill C

Effect of Na₂SO₄
EFR Temp: 500°C, B/Na=0.048, Mill C
Conclusions

- Borate autocausticizing reaction occurs rapidly during black liquor combustion.
- Complete reaction may be achieved for black liquor that has a B/Na weight ratio below 0.05 (about 35% autocausticizing).
- The amount of caustic produced increases with:
 - Borate content in black liquor
 - EFR Temperature
 - Black liquor particle size