AN OVERVIEW OF CHEMREC® PROCESS CONCEPTS

Mats Lindblom, Chemrec AB

Presentation at the Colloquium on Black Liquor Combustion and Gasification
May 13-16, 2003, Park City, Utah

AN OVERVIEW OF CHEMREC® PROCESS CONCEPTS

1. CHEMREC - Major Applications
2. Development Milestones of CHEMREC
3. Gasification Technology Principles
4. Atmospheric Black Liquor Gasification system
5. The Chemrec Booster in New Bern
6. Atmospheric BLG Performance
7. The Pressurized Black Liquor Gasification system
8. The BLG Process – Mill Integration Flow Scheme
9. BLGCC concept
10. Performance - Chemrec BLGCC
11. BLGMF concept
12. Performance - Chemrec BLGMF
13. BLGMF Process Biomass to Fuel Efficiency
14. Technical Development
1. CHEMREC® - MAJOR APPLICATIONS

Ready for commercialisation:
- Booster (atmospheric air blown gasification)
 - Relieve overloaded recovery boilers
 - Capacity expansion projects

Continued development:
- BLGCC - Black Liquor Gasification Combined Cycle (pressurised oxygen-blown gasification)
 - Replacing recovery boiler
 - Increasing green power production
 - Improved pulp cooking liquors
- BLGAMF - Black Liquor Gasification with Methanol/DME Production as Motor Fuels for Automotive Uses
 - Replacing recovery boiler
 - Introducing new profitable green product line
 - Improved pulp cooking liquors

2. CHEMREC® DEVELOPMENT MILESTONES

- Atmospheric pilot plant, 3 tDS/24 h, SKF, Hofors, 1987
- Booster demonstration plant, 75 tDS/24 h, AssiDomän, Frövi, 1991
- Pressurized air-blown pilot plant, 6 tDS/24 h, Stora Enso, Skoghall, 1994
- Commercial Booster plant, 300 tDS/24 h, Weyerhaeuser, New Bern, 1996
- Pressurized oxygen-blown rebuilt pilot, 10 tDS/24 h, Stora Enso, Skoghall, 1997
- Piteå Development Plant 1 engineering starts 2001
3. GASIFICATION TECHNOLOGY PRINCIPLES

4. ATMOSPHERIC, AIR-BLOWN BLACK LIQUOR GASIFICATION SYSTEM
5. THE CHEMREC BOOSTER IN NEW BERN

6. PERFORMANCE - CHEMREC BOOSTER

Black Liquor throughput: 200 - 400 tDS/d
Operating temperature: 950 °C
Pressure: 0.7 bar(g)
Carbon conversion: >99 %
Thermal efficiency: 45 %
Syngas LHV: 2.5 - 3.5 MJ/ Nm³

Composition:
- H₂: 10-15 %vol
- CO: 8-12 %vol
- CH₄: 0.2-1 %vol
- CO₂: 15-17 %vol
- N₂: 55-65 %vol

Na & Sulphur Separation: 15% of incoming S found in syngas.
7. THE PRESSURISED BLG SYSTEM

- Gasifier
- Quench
- Condenser
- Counter Current Condenser
- Condensate
- Oxygen Atomizing medium
- Raw Syngas
- LP-Steam
- MP-Steam
- C.W
- BFW
- Clean Cooled Syngas
- Weak wash
- Green Liquor
- HX
- Cleaned Syngas

8. THE BLG PROCESS - MILL INTEGRATION FLOW SCHEME

- Pressurized BLG Process
- Gasifier/Quench
- Gas Cleanup Plant
- Electric Power or Synfuel Plant
- Oxygen Plant
- Cooking Liquor Preparation
- Sulfur Conversion
- Green/White Liquor
- Polysulfide Liquor
- High Sulfdity Green Liquor
- Low Sulfdity Green Liquor
- SO₂
- H₂SO₄
- Oxygen
- EL Power or Methanol/DME
- Air
- Black Liquor
9. CHEMREC BLGCC PROCESS

10. PERFORMANCE - CHEMREC BLGCC

Black Liquor throughput: >1000 tDS/d
Operating temperature: 950 °C
Pressure: 30 bar(g)
Carbon conversion: >99 %
Total thermal efficiency: 80 %
Syngas LHV: 7 - 9.5 MJ/ Nm³

Composition:
- H₂: 30-35 % vol
- CO: 28-32
- CH₄: 0.5-2
- CO₂: 30-35
- N₂: 1-4

Na & Sulphur Separation: 55% of incoming S found in gas.
11. CHEMREC BLGMF CONCEPT (EXCL. BIOMASS BOILER)

- Gasifier
- Raw Gas Cooler
- Air Separation Unit
- Oxygen
- Pilot burner fuel
- Black Liquor
- Gasifier
- Quench
- Green Liquor to the Pulp mill
- Pre-wash
- Absorber
- Regen.
- H2S rich gas
- Abs I
- Abs II
- H2S absorpti
- H2S rich gas
- CO-shift
- 99.8%
- CO2
- Waste water
- 50%
- CO2
- Waste water
- 99.8% Methanol
- MeOH Distillation
- Claus Tail Gas
- Alt1
- Alt2
- Waste water
- 50%
- Syngas
- Compr.
- Syngas
- Compr.
- Combustible gases
- Purge + Flash gases
- 30 bar steam
- Raw Methanol
- MP+ LP Steam
- Air Separation unit
- Oxygen
- Electric Power
- pilot burner fuel
- LP Steam
- Pre-wash
- Tails
- Liqu. Sulphur
- H2S absorption
- High S. Green Liquor
- Claus unit
- H2S rich gas
- Absorber
- Regen.
- H2S rich gas
- Abs I
- Abs II
- H2S absorpti
- H2S rich gas
- CO-shift
- 99.8%
- CO2
- Waste water
- 50%
- Syngas
- Compr.
- Syngas
- Compr.
- Combustible gases
- Purge + Flash gases
- 30 bar steam
- Raw Methanol
- MP+ LP Steam
- Air Separation unit
- Oxygen
- Electric Power
- pilot burner fuel
- LP Steam
- Pre-wash
- Tails
- Liqu. Sulphur
- H2S absorption
- High S. Green Liquor
- Claus unit
- H2S rich gas
- Absorber
- Regen.
- H2S rich gas
- Abs I
- Abs II
- H2S absorpti
- H2S rich gas
- CO-shift
- 99.8%
- CO2
- Waste water
- 50%
- Syngas
- Compr.
- Syngas
- Compr.
- Combustible gases
- Purge + Flash gases
- 30 bar steam
- Raw Methanol
- MP+ LP Steam
- Air Separation unit
- Oxygen
- Electric Power
- pilot burner fuel
- LP Steam
- Pre-wash
- Tails
- Liqu. Sulphur
- H2S absorption
- High S. Green Liquor
- Claus unit
- H2S rich gas
- Absorber
- Regen.
- H2S rich gas
- Abs I
- Abs II
- H2S absorpti
- H2S rich gas
- CO-shift
- 99.8%
- CO2
- Waste water
- 50%
- Syngas
- Compr.
- Syngas
- Compr.
- Combustible gases
- Purge + Flash gases
- 30 bar steam
- Raw Methanol
- MP+ LP Steam
- Air Separation unit
- Oxygen
- Electric Power
- pilot burner fuel
- LP Steam
- Pre-wash
- Tails
- Liqu. Sulphur
- H2S absorption
- High S. Green Liquor
- Claus unit
- H2S rich gas
- Absorber
- Regen.
- H2S rich gas
- Abs I
- Abs II
- H2S absorpti
- H2S rich gas
- CO-shift
- 99.8%
- CO2
- Waste water
- 50%
- Syngas
- Compr.
- Syngas
- Compr.
13. BLGMF PROCESS BIOMASS TO FUEL EFFICIENCY

Production Efficiency = \frac{\text{Methanol/ DME}}{\text{Additional Renewable Energy}} = 65-75\%

14. CHEMREC DEVELOPMENT PLANTS DP-1 AND DP-2

<table>
<thead>
<tr>
<th>Plant</th>
<th>Location</th>
<th>Process Units</th>
<th>Capacity (tDS per d/ MW)</th>
<th>Pressure (bar)</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP2*</td>
<td>Kappa Kraftliner Piteå</td>
<td>- Full BLGCC concept</td>
<td>~300 / 45</td>
<td>32</td>
<td>- Fully develop the BLGCC concept. - Net product approx. 10 MW, and 35 t/h of steam.</td>
</tr>
</tbody>
</table>

*) Plant Investments Supported by a Grant from the Swedish Government of 238 MSEK, approx 25 Mill €