Evolution of Black Liquor Gasifier Designs

Chris Verrill
IPST
Kevin Whitty
University of Utah
May 14, 2003

Shamelessly based on Kevin Whitty’s “State of the Art in Black Liquor Gasification Technology” presentation for the IEA Annex XV Meeting 20-21 August 2002 Piteå, Sweden

Outline

• Introduction
• History of BLG development
• Current BLG technologies
• Future of BLG
• Conclusions
Introduction – Future Industry Needs

- Eliminate Smelt-water Explosions
- Lower Capital Cost
- Lower Energy Use
- Lower Emissions
- Less Downtime
- Less Deadload
- Less Raw Material

Black Liquor Gasification

- Promising Advantages
 - More electricity per lb steam co-generated
 - New chemical recovery options
 - Higher availability
- Development & demonstration issues
 - Competitive system cost
 - Materials lifetime
 - Overall mill impact
Prehistory…

The First Black Liquor Gasifier?
(From a patent application by G.A. Richter, 1927)
First Chemicals Production from BL Syngas?
(From a patent by E.G Goodell, 1945)

First Application of Split Sulfidity?
(From a patent by W.L. Savell, 1951)
"Recent" BLG Development Efforts
(Underline = built pilot or demo facility, Bold = currently active)

- Low temperature
 - St. Regis*
 - Weyerhaeuser
 - Owens-Illinois
 - ABB*
 - KBR*
 - Copeland
 - SCA-Billerud*
 - Texaco*
 - VTT
 - B&W*
 - MTCI*
 - DARS

- High temperature
 - NSP*
 - U. California*
 - Paprican
 - Tampella*
 - B&W
 - Champion/Rockwell*
 - SKF
 - Ahlstrom
 - Noell
 - Chemrec*

Gasifier Design Categories

- High-pressure, hydro-thermal reactors
- Deconstructed/reengineered Tomlinson
- Molten salt reactors
- Bubbling beds
- Circulating fluidized beds
- Entrained flow reactors
St. Regis Hydropyrolysis Process
(~1967-1980)

Texaco Black Liquor Coking Process
(~1967-1974)
Champion/Rockwell Pilot Gasifier
(~1982-1988)

- Black liquor
- Product gas outlet
- Castable refractory
- Insulation
- Fuse cast alumina bricks
- Upper air nozzles (x6)
- Lower air nozzles (x6)
- Smelt withdrawal port
- Air nozzle and liquor drain port

B&W Bubbling-Bed Gasifier
(~1993-1998)
State of the Art: Bubbling Bed Design

Manufacturing Technology and Conversion International (MTCI)

Steam Reforming Process

State of the Art — MTCI

- Fluidized bed (bubbling)
- Low temperature (~600°C)
- Low pressure
- Steam for reaction / fluidizing
- Medium heating value fuel gas
 - 73% H₂
 - Approx. 13.3 MJ/Nm³
- Essentially all sulfur to gas as H₂S
MTCI Steam Reformer

MTCI System Configuration

Source: MT CI
State of the Art: Circulating Fluidized Bed

Kellogg, Brown and Root (KBR)

Transport and Spouting Bed Gasifiers
State of the Art — KBR

- Two fluidized bed reactor concepts
 - Transport reactor
 - Spouting bed
- Enriched air-blown
- Pressurized (>20 bar)
- "Medium temperature" (800–1000°C)
- Titanate addition
 - Allow operation at higher temperature
 - Effect direct causticization
- Medium heating value fuel gas (7–12 MJ/Nm³)
- Novel sulfur removal and recovery processes
KBR Conceptual Gasification Process

KBR Development Status

- Conceptual studies completed
- Initial pilot studies completed
 - 0.15 tds/day transport reactor test unit
 - Proof of concept successful
- Next stage of pilot testing planned
 - 2.4 tds/day transport reactor unit at UNDEERC
 - Verification of scale-up issues
- Titanate studies
 - Integrity and reactivity of low-attrition titanate
 - Leaching of Na from bed solids at high pressure
- Demonstration targeted for 2005-2008
SCA-Billerud Process
(~1958-1980)

Tampella Entrained-Flow Gasifier
(~1988-1993)
State of the Art: Entrained Flow Reactor

Chemrec

Entrained Flow Gasifier

State of the Art — Chemrec

- Entrained flow gasifier
- High temperature (~975°C)
- Two applications:
 - “Booster” system for capacity increase
 - “BLGCC” system to replace recovery boiler

More details in following presentation
The Future of BLG

• Continued interest in BLG is apparent
 – Pulp & paper industry
 – Utility suppliers
 – Oxygen suppliers

 Multi-party funding with government partners needed to overcome risk of first units

• Demonstration that “roadblocks” have been addressed
 – New Bern (refractory issues)
 – Big Island (carbon conversion)

 Success will accelerate development
The Future of BLG

• Demonstration of BLGCC / Tomlinson replacement capability
 – Performance / availability / economics
 – “First to market”
 ➢ Identification of favored technology

• Emergence of other BLG suppliers
 – BLG becomes more economically attractive
 – Improvements in BLG performance
 ➢ Competitive with Tomlinson in 15 years?

Conclusions

• Over 20 efforts to develop/commercialize BLG
 – 50/50 low/high temp
 – Mix of groups

• Currently 2 visibly active development efforts
 – MTCI
 – Chemrec

• Currently on brink of commercialization
 – MTCI involved in several commercial projects
 – Chemrec offering booster commercially
 – Chemrec progressing with BLGCC commercialization