Influence of liquor to liquor differences on recovery boiler operation –
A CFD based study

Christian Mueller, Kaj Eklund, Mikael Forssén, Mikko Hupa
Åbo Akademi Process Chemistry Group
Combustion and Materials Chemistry
Turku, Finland

Karin Eriksson, Jan Eriksson
Vattenfall Utveckling AB
Älvkarleby, Sweden
Objectives

• Liquor-to-Liquor Differences Lead to Operational Challenges
• Study of Liquor Properties in the ÅA Single Droplet Experiment
• Utilise Liquor Property Data in CFD Simulations
• Study of Liquor-to-Liquor Differences and Their Influence on Operational Conditions by Means of CFD
Outline

• ÅA Recovery Furnace Model
 Simplified Black Liquor Droplet Model
 Simplified Black Liquor Char Bed Model
• Test Case: Domsjö Recovery Furnace
• Results
• Conclusions
ÅA Recovery Furnace Model

CFD Code

Fluent 6.1

- **Turbulence**
 Standard $k-\varepsilon$ Model

- **Chemistry**
 Modified $C_xH_yO_z$-Air 4-Step Scheme

\[
C_xH_yO_z + a\ O_2 \rightarrow b\ CO + c\ H_2 + d\ H_2O
\]

\[
C_xH_yO_z + e\ H_2O \rightarrow f\ CO + g\ H_2 + h\ H_2O
\]

\[
H_2 + 0.5\ O_2 \rightarrow H_2O
\]

\[
CO + H_2O \leftrightarrow CO_2 + H_2
\]

- **Turbulence-Chemistry**
 Eddy Dissipation Combustion Model

- **BL-Droplets/CharBed**
 ÅA-BLC Model

- **Radiation**
 Discrete Ordinates Radiation Model
Simplified Black Liquor Single Droplet Model

- Swelling Droplet
 - Devolatilisation (2)
- Char Particle
 - Char Burning (3)
- Black Liquor Droplet
- Drying (1)
- Drying Droplet
- Smelt Bead Formation (4)
- Smelt Bead

Single Droplet Model after Frederick & Hupa, 1993
Simplified Black Liquor Char Bed Model

- Fixed char bed shape and temperature: 1300 K

- Droplet landing on wall or char bed:
 Immediate release of the remaining water, volatiles and conversion of char carbon to CO
Test Case – Domsjö Boiler

Height: 28 m
Nose tip height: 17.5 m
Length and width: ~6.5 m

Total air feed: 28.34 kg/s
Mass flow of black liquor: 7.23 kg/s
Rota-Firing Mode

Air level 3 (11 m, 22% of total air)
Black liquor guns (7 m)
Air level 2 (3 m, 45% of total air)
Air level 1 (1 m, 33% of total air)
Black Liquor Properties – Case Setup

- Volatile yield: 25.7% / BLS
- Char carbon: 13.7% / BLS

- Devolatilization parameters:
 \[A = 3.12 \times 10^5 \text{ } \text{1/s} \]
 \[E_a = 7.4 \times 10^7 \text{ } \text{J/kmol} \]

- Droplet size distribution:
 Rosin-Rammler type
 Droplet diameter range 0.7 – 5 mm
 Mean diameter size 2.8 mm

| Black Liquor Composition [\%DS] |
|-----------------------------|-------------------|
| C | 37.7 |
| H | 3.6 |
| N | < 0.1|
| Na | 18.8 |
| K | 1.4 |
| S | 3.8 |
| Cl | 0.46 |
Case Study

<table>
<thead>
<tr>
<th>Case</th>
<th>Swelling (d_{max}/d_0)</th>
<th>Dry Solids Content [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>62</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>82</td>
</tr>
</tbody>
</table>
Temperature Distribution [K] – Center Cross-Section

Low DS High DS
Low SW High SW
Low SW High SW
Temperature Distribution [K] – Horizontal Plane (4.5 m)
Temperature Distribution [K] – Horizontal Plane (8 m)

Low DS

Low SW

High SW

High DS

K

Legend:
- 1858.000
- 1711.300
- 1664.600
- 1517.900
- 1271.200
- 1124.500
- 977.800
- 831.100
- 684.400
- 537.700
- 391.000
Drying – Water Release – Center Cross-Section

Low DS

Low SW

High SW

High DS

kg/m³s

1.00e-03
9.00e-04
8.00e-04
7.00e-04
6.00e-04
5.00e-04
4.00e-04
3.00e-04
2.00e-04
1.00e-04
0.00e+00
Devolatilisation – Volatile Release – Center Cross-Section

Low DS

Low SW

High SW

High DS

kg/m³s

1.73e-04
1.56e-04
1.39e-04
1.21e-04
1.04e-04
8.66e-05
6.93e-05
5.19e-05
3.46e-05
1.73e-05
0.00e+00
Char-Carbon Conversion – Center Cross-Section

Low DS

Low SW

High SW

High DS

kg/m3s

0.00e+00

9.00e-06

1.80e-05

2.70e-05

3.60e-05

4.50e-05

5.40e-05

6.30e-05

7.20e-05

8.10e-05

9.00e-05
Conclusions (1)

• Obvious influence of DS-content on furnace performance

• Minor influence of liquor swelling tendency
 - almost no influence for low DS liquor
 - stronger influences for high DS liquor

• Massive char-carbon conversion on the rear wall (up to 35%)
Droplet Trajectories – Volatile Release – Front Liquor Gun

kg/s

High DS
High SW
Droplet Trajectories – Volatile Release – Front Liquor Gun

kg/s

Low DS
High SW
Droplet Trajectories – Volatile Release – Right Liquor Gun

kg/s

High DS
High SW
Velocity Distribution [m/s] – Secondary Air Level

m/s

High DS
High SW
Velocity Distribution [m/s] – Center Cross-Section

High DS
High SW
Temperature Distribution [K] – Side Walls

- Rear wall
- Left wall
- Right wall
- Front wall

Temperature Color Scale:
- 1858.000
- 1711.300
- 1564.600
- 1417.900
- 1271.200
- 1124.500
- 977.800
- 831.100
- 684.400
- 537.700
- 391.000

High DS
High SW
Velocity Distribution [m/s] – Liquor Gun Air Level

- High DS
- High SW
Conclusions (2)

- **Influence of swelling on the furnace performance**
 Low DS: Most droplets devolatilize at the secondary air level or on the char bed → Minor influence of swelling
 High DS: Devolatilization higher up in the furnace
 Low upward flowing gas streams → Little influence of swelling

- **Massive char-carbon conversion on the rear wall**
 Liquor spraying (right liquor gun) and air distribution responsible for liquor conversion on the rear wall
Acknowledgement

Akademi of Finland
Tekes
Andritz Oy
Kvaerner Power Oy