Thermochemical modeling of the inorganic reactions in pressurized black liquor gasification

Daniel Lindberg, Rainer Backman
PCG-Combustion and materials Chemistry
Åbo Akademi University

Colloquium on Black Liquor Combustion and Gasification
May 13-16, 2003
Park City, Utah
Pressurized black liquor gasification

– Possible compliment to the Kraft Recovery Boiler

– Different concepts
 • High / low temperature gasification
 • Fluidized bed / Entrained flow
Background

– Melting behavior of the inorganics and the behavior of the elements relevant for the chemical recovery are dependent on:

 • Black liquor composition
 • Process parameters

– Thermochemical modeling is a good stand-alone tool or submodel for predicting the chemistry at varying physical and chemical conditions
Objective

– **Apply** thermodynamical equilibrium modeling to **predict** the inorganic chemistry in **pressurized** black liquor gasification

 • Melting behavior of the inorganics
 – Slagging & Fouling
 – Corrosion
 – Bed agglomeration

 • Recovery of pulping chemicals
 – Sulfur in a gaseous or condensed phase
 – Volatilization of Sodium
Thermodynamical equilibrium modeling in combustion and gasification systems

Result:
Gaseous Products (composition and amount)

Composition input
- Fuel
 - Organic part
 - Ash
 - H_2O
- Air

Equilibrium Reactor

\[v = \frac{NRT}{P} \]

System input
- Thermodynamic data for all species (H, S, Cp or $G = f(T)$)
- Solution parameters

Result:
Condensed Products (composition and amount)
Solids, Melts

Composition input: Fuel, Air
System input: Thermodynamic data, Solution parameters
Result: Gaseous Products, Condensed Products

Software tools:
FactSage, ChemSage, ChemSheet, ChemApp
Thermochemical modeling of pressurized black liquor gasification

Black liquor composition (Wt-% DS)

<table>
<thead>
<tr>
<th>Element</th>
<th>Wt-% DS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>37</td>
</tr>
<tr>
<td>H</td>
<td>4</td>
</tr>
<tr>
<td>O</td>
<td>35</td>
</tr>
<tr>
<td>Na</td>
<td>17</td>
</tr>
<tr>
<td>S</td>
<td>3.8 - 7.4 (Sulfidity = 0.3 or 0.6)</td>
</tr>
<tr>
<td>K</td>
<td>1.5</td>
</tr>
<tr>
<td>Cl</td>
<td>0.2 - 1.1</td>
</tr>
</tbody>
</table>

Temperature: 400-1600 °C
Pressure: 1-100 bar
Air/Fuel ratio: 0 - 1
Melting range of inorganics at gasification conditions
AR<0.6, varying black liquor composition

<table>
<thead>
<tr>
<th>Pressure [bar]</th>
<th>Temperature [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>550</td>
<td>600</td>
</tr>
<tr>
<td>600</td>
<td>650</td>
</tr>
<tr>
<td>650</td>
<td>700</td>
</tr>
<tr>
<td>700</td>
<td>750</td>
</tr>
<tr>
<td>750</td>
<td>800</td>
</tr>
<tr>
<td>800</td>
<td>850</td>
</tr>
</tbody>
</table>

- **Only molten**
- **Melt + solid mixture**
- **Only solid**

Melting range
Melting properties of the inorganic salts

$P = 10\text{ bar, } \lambda = 0.3$

$T_{70} = \text{flow temperature}$

$T_{15} = \text{sticky temperature}$
Melting properties of the inorganic salts

$P = 10$ bar, $\lambda = 0.3$

$T_{70} =$ flow temperature

$T_{15} =$ sticky temperature

Low S, High Cl

Low S, Low Cl
Melting properties of the inorganic salts

$P = 10$ bar, $\lambda = 0.3$

$T_{70} =$ flow temperature

$T_{15} =$ sticky temperature

Low S, Low Cl

Low S, High Cl
Melt fraction at $T=700 \, ^\circ C$, $P=10$ bar, $AR=0.3$
S distribution

P=10 bar, λ=0.3

Mol-% (cumulative)

Temperature [°C]

(Na,K)$_2$S (l)

COS (g)

H$_2$S (g)

(Na,K)$_2$S (melt)
S distribution

T=1000 °C, \(\lambda = 0.3 \)
S distribution

T=1000 °C, P=10 bar

Air/Fuel ratio

Mol-% (cumulative)

- H₂S (g)
- COS (g)
- SO₂
- (Na,K)₂S (l)
- (Na,K)₂SO₄ (l)
Na distribution
T = 1200 °C, λ=0.0

- Gaseous Na
- NaOH (l)
- NaCl (s,l)
- Na₂S (l)
- Na₂CO₃ (l)
Na distribution

T=1200 °C, P=10 bar

Mol-% (cumulative)

Air/Fuel ratio

Na (g)
NaOH (l)
NaCl (l)
Na₂CO₃ (s,l)
Na₂S (l)
Na₂SO₄ (l)
Conclusions (I)
Melting properties

• Melting range: 570-590 °C → 750-850 °C
• High Cl content in black liquor
 → Sticky temperature significantly lowered
 (up to 100 °C)
• At low-T gasification conditions:
 – Melt fraction highly variable → agglomeration of
 bed material is possible
Conclusions (II)
Behavior of Na and S

• In low-T gasification
 – Most sulfur as gaseous \(H_2S\)

• In high-T gasification
 – Sulfur as gaseous \(H_2S\) or in melt
 • High T
 • Low P
 • Low \(\lambda\)
 Sulfur in melt
Conclusions (II)
Behavior of Na and S

• In low-T gasification
 – Sodium in solid salts or salt melt

• In high-T gasification
 – Sodium mainly in melt
 • High T
 • Low P
 Sodium volatilized
 • Low λ