Preliminary Economics of Black Liquor Gasification with Motor Fuels Production

Niklas Berglin, STFI
Mats Lindblom, Chemrec
Tomas Ekbom, Nykomb Synergetics
Cost of fuel at pump
(incl. distribution cost, excl. taxes and profit)

Source: Swedish National Road Administration, 2002
Cost of fuel at pump
(incl. distribution cost, excl. taxes and profit)

Source: Swedish National Road Administration, 2002
Outline

• **Background**
• **Process**
• **Mass and Energy Balances**
• **Costs and Benefits**
• **Conclusions**
Driving Forces

- **Kyoto agreement:**
 - Reduce greenhouse gas emissions in OECD countries by 2012
 - European Union target: 8% decrease compared to 1990 levels

- **Proposed EU directive:**
 - 2% of motor fuels from renewables by 2005
 - 5.75% by 2010

- **Possibility to profit for those who own carbon-neutral feedstock!**
Methanol

+ Well established commodity, 30 MMt/y
+ Liquid at normal T and P
+ Suitable for blending
+ Only small modifications for Otto engines
+ Low HC emissions
+ Efficient conversion from syngas to MeOH
+ Can be used in fuel cells
- Toxic
- Corrosive
- “Cold start problem”
- Hydrophilic
- Aldehyde emissions
- Low energy density compared to gasoline
Dimethyl Ether (DME)

+ Non-toxic
+ Very efficient conversion from syngas to DME
+ Low emissions
+ Efficient in diesel cycles
+ Potential for no exhaust filter to fulfill emission norms Euro IV (-06) and V (-09) as well as EPA norm for (-10)

- Gas at normal T and P
- Not suitable for blending
- Requires modified (Diesel) engines
Fischer-Tropsch Fuels

+ Conventional HCs
+ High energy density
+ Easily introduced into existing distribution system

- Less efficient conversion from syngas
- Emissions similar to conventional fuels
- Need exhaust filters for particulates and NOx for coming Euro IV and V and EPA emission norms
Hydrogen

+ Efficient conversion from syngas
+ Can be used in fuel cells
+ No HC, CO, NOx emissions from vehicle

- Gas at normal T and P
- Large losses in distribution
- Explosive
- Very low energy density
- Difficult to store
Why Use Black Liquor As Feedstock?

• **Energy Surplus**
 - One way of exporting energy surplus of a modern market pulp mill

• **Process more easily pressurized than with solid biomass**
 - Pressurization improves heat recovery and yields higher efficiency

• **Very low methane content in syngas**
 - Simplifies methanol synthesis and increases yield

• **Synergies with pulp production**
BLGMF: Study Supported by the EU Altener II Program

- **Duration:** Feb 2002 - Nov 2003
- **Total cost:** €400,000
- **Contents:**
 - Process design
 - Mill integration
 - Energy balances
 - Cost estimate
 - Market barriers
Project Partners

- **NYKOMB SYNERGETICS**
 Process engineering consultant

- **STFi**
 Research centre for pulp and papermaking

- **CHEMREC**
 Gasification technology supplier

- **OKQ8**
 National gasoline and oil distributor

- **Methanex**
 World’s largest methanol producer and distributor

- **Ecotraffic**
 Automotive fuel and engine consultant

- **Volvo**
 World-known automotive and engine developer
Outline

- Background
- **Process**
- Mass and Energy Balances
- Costs and Benefits
- Conclusions
Black Liquor Gasification
Combined Cycle (BLGCC)

Air Separation

Oxygen

Gasification & Gas Cooling

Gas Clean-Up & Sulfur Handling

High-Sulfidity Liquor

Combined Cycle

Electric Power

Syngas
Black Liquor Gasification with Motor Fuels Production (BLGMF)

- Air Separation
- Oxygen
- Black Liquor
- Green Liquor
- Gasification & Gas Cooling
- Gas Clean-Up & Sulfur Handling
- Syngas
- Methanol or DME Synthesis
- Methanol or DME
Process Flow Diagram BLGMF

AIR SEPARATION

METHANOL SYNTHESIS

GASIFICATION

SULFUR RECOVERY
Outline

• Background
• Process
• Mass and Energy Balances
• Costs and Benefits
• Conclusions
Basis for Comparison

- **Modern market pulp mill & integrated mill**
 - Compare recovery boiler, BLGCC and BLGMF

- **Same steam demand for all cases**
 - Market pulp 10 GJ/ADt, Integrated 16 GJ/ADt
 - Purchased biomass fuel, if necessary
 - Corresponding cogeneration of power
 - Remaining power purchased or generated in biomass-fired boiler/condensing steam turbine system
Reference Case: Recovery Boiler

Pulp, 1000 ADt/d

Wood, 2200 t/d

Internal requirement of electric power and heat

Black Liquor

Green Liquor

PULP MILL

Bark Boiler

Recovery Boiler

Electric Power 23 MW
Methanol Case: BLGMF Plant

- Wood, 2200 t/d
- Internal requirement of electric power and heat
- PULP MILL
 - Black Liquor
 - Green Liquor
- BLGMF Plant
 - Heat / Power Boiler Plant
- Biomass 215 MW
- Methanol 140 MW, 610 t/d
- Pulp, 1000 ADt/d
Biomass to Methanol Efficiency

• **Calculated as:**

\[
\frac{\text{Methanol Produced}}{\text{Total Incremental Biomass Used}}
\]

• **“Total Incremental Biomass” includes:**
 - Fuel used in mill to meet steam demand
 - Fuel used in biomass-fired power plant (on-site or external) to make up for power not generated from black liquor
Efficiency Comparison

MeOH via Solid Biomass Gasification - 45-50%

MeOH via Black Liquor Gasification - 64-66%
Outline

• Background
• Process
• Mass and Energy Balances
• Costs and Benefits
• Conclusions
<table>
<thead>
<tr>
<th>Component</th>
<th>Reference Mill</th>
<th>BLGMF 54%</th>
<th>BLGMF 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air separation unit</td>
<td>35</td>
<td>183</td>
<td>265</td>
</tr>
<tr>
<td>Gasification & gas cooling</td>
<td>--</td>
<td>351</td>
<td>508</td>
</tr>
<tr>
<td>Gas clean-up (Rectisol), shift reactor & compressor</td>
<td>--</td>
<td>170</td>
<td>246</td>
</tr>
<tr>
<td>Sulfur handling (H2S Reabsorption)</td>
<td>--</td>
<td>55</td>
<td>80</td>
</tr>
<tr>
<td>Methanol synthesis and distillation</td>
<td>--</td>
<td>172</td>
<td>249</td>
</tr>
<tr>
<td>Balance of plant</td>
<td>--</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>Recovery boiler</td>
<td>845</td>
<td>565</td>
<td>--</td>
</tr>
<tr>
<td>Subtotal</td>
<td>880</td>
<td>1531</td>
<td>1398</td>
</tr>
<tr>
<td>Biomass boiler</td>
<td>--</td>
<td>--</td>
<td>530</td>
</tr>
<tr>
<td>Steam turbine</td>
<td>185</td>
<td>76</td>
<td>75</td>
</tr>
<tr>
<td>Lime kiln + bark dryer</td>
<td>191</td>
<td>215</td>
<td>235</td>
</tr>
<tr>
<td>TOTAL INVESTMENT</td>
<td>1256</td>
<td>1822</td>
<td>2238</td>
</tr>
</tbody>
</table>

Incremental Investment for BLGMF Model Mill

| Corresponding amount in million USD | 71 | 123 |

Includes site preparation, buildings, electrical, piping, instrumentation, engineering, license fees and contingencies. Estimated costs have been scaled from several sources with an initial accuracy of +/- 30%. Scaling adds an additional
BLGMF Investment Costs

- **Gasification & gas cooling**: 35%
- **Air separation unit**: 19%
- **Gas clean-up (Rectisol), shift reactor & compressor**: 18%
- **Sulfur handling (H2S Reabsorption)**: 6%
- **Methanol synthesis and distillation**: 18%
- **Balance of plant**: 4%
OPERATING COSTS/BENEFITS, excl. MeOH

2000 ADt/d market pulp mill

<table>
<thead>
<tr>
<th>Description</th>
<th>Reference</th>
<th>BLGMF Mill</th>
<th>BLGMF 54%</th>
<th>BLGMF 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>MSEK/a</td>
<td>-85</td>
<td>59</td>
<td>87</td>
</tr>
<tr>
<td>Biofuels **</td>
<td>MSEK/a</td>
<td>-22</td>
<td>-17</td>
<td>95</td>
</tr>
<tr>
<td>Catalyst</td>
<td>MSEK/a</td>
<td>0</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Maintenance</td>
<td>MSEK/a</td>
<td>134</td>
<td>145</td>
<td>154</td>
</tr>
<tr>
<td>Incremental Labor</td>
<td>MSEK/a</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Net Operating Cost</td>
<td>MSEK/a</td>
<td>26</td>
<td>196</td>
<td>349</td>
</tr>
</tbody>
</table>

METHANOL PRODUCTION COST

<table>
<thead>
<tr>
<th>Description</th>
<th>Reference</th>
<th>BLGMF 54%</th>
<th>BLGMF 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental Capital Cost</td>
<td>MSEK/a</td>
<td>57</td>
<td>98</td>
</tr>
<tr>
<td>Incremental Operating Cost</td>
<td>MSEK/a</td>
<td>169</td>
<td>323</td>
</tr>
<tr>
<td>Incremental Cost, Total</td>
<td>MSEK/a</td>
<td>226</td>
<td>421</td>
</tr>
<tr>
<td>Methanol produced</td>
<td>ktonnes/a</td>
<td>201</td>
<td>373</td>
</tr>
<tr>
<td>Cost of methanol produced</td>
<td>SEK/tonne</td>
<td>1123</td>
<td>1129</td>
</tr>
<tr>
<td>Cost per litre</td>
<td>SEK/l</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Cost per litre gasoline eq.</td>
<td>SEK/l</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Corresponding in USD</td>
<td>USD/g</td>
<td>0.86</td>
<td>0.87</td>
</tr>
</tbody>
</table>

** low price for sold bark, high price for purchased wood residues
Estimated Competitive Sales Price, Including CO₂ Tax Credit (Sweden, 2003)

Gasoline:
- V.A.T.: 1.90
- CO2 tax: 1.77
- Energy tax: 2.94
- Distribution: 1.05
- Production: 1.83

Methanol:
- V.A.T.: 1.90
- CO2 tax: 2.94
- Energy tax: 1.35
- Distribution: 3.30

Consumer Price at Pump, 9.5 SEK/l (4.5 USD/gal)

Potential sales price at mill gate
<table>
<thead>
<tr>
<th></th>
<th>Reference</th>
<th>BLGMF</th>
<th>BLGMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000 ADt/d market pulp mill</td>
<td></td>
<td>54%</td>
<td>100%</td>
</tr>
<tr>
<td>Methanol</td>
<td>MSEK/a</td>
<td>411</td>
<td>760</td>
</tr>
<tr>
<td>Electricity</td>
<td>MSEK/a</td>
<td>85</td>
<td>-59</td>
</tr>
<tr>
<td>Biofuels **</td>
<td>MSEK/a</td>
<td>22</td>
<td>17</td>
</tr>
<tr>
<td>Catalyst</td>
<td>MSEK/a</td>
<td>-5</td>
<td>-10</td>
</tr>
<tr>
<td>Maintenance</td>
<td>MSEK/a</td>
<td>-134</td>
<td>-145</td>
</tr>
<tr>
<td>Incremental Labor</td>
<td>MSEK/a</td>
<td>-4</td>
<td>-4</td>
</tr>
<tr>
<td>NET OPERATING BENEFIT</td>
<td>MSEK/a</td>
<td>-26</td>
<td>215</td>
</tr>
</tbody>
</table>

Incremental Net Operating Benefit

- MSEK/a: 241, 438
- SEK/ADt: 383, 695

corresponding in million USD per year

- 30, 55

corresponding in USD per tonne of pulp

- 48, 87
Sensitivity Analysis

Methanol Production Cost
(SEK/l.g.e.)

Investment
Electricity
Biomass
Annuity factor

Sensitivity Analysis

Methanol Production Cost
(USD/gal.g.e.)

-50% -25% 0% 25% 50% 75% 100%
Outline

• Background
• Process
• Mass and Energy Balances
• Technology Status
• Conclusions
Cost of fuel at pump
(incl. distribution cost, excl. taxes and profit)

Source: Swedish National Road Administration, 2002
Conclusions

• **Energy Balance**
 - About 600 tonnes MeOH per 1000 ADt pulp
 - Modern market pulp mill could produce MeOH from about 50% of the black liquor without purchasing any fuels

• **Efficiency**
 - Considerably better than for gasification of biomass to generate methanol

• **Economics**
 - Production cost low compared to other renewable fuels
 - Potentially large revenue stream for pulp mill
 - Very profitable if CO2 tax credit can be claimed

• **Environment**
 - Significant potential for reduction of CO2 emissions in some regions, e.g. 10% of total CO2 emissions in Sweden
Further Work

• Evaluation of DME case
• Refined investment estimate
• Detailed financial analysis
• Analysis of market barriers
Thank You!