Derivation of equation for $u_i' u_i'$

\[
\frac{u_i' \partial u_i}{\partial t} = \ldots .
\]

\[\frac{u_i' \partial u_i}{\partial t} = \ldots .
\]

add together

\[
\frac{u_i' \partial (u_i' + u_i')}{\partial t} + \frac{u_i' \partial (u_i' + u_i')}{\partial t} = \ldots .
\]

\[
\frac{u_i' \partial u_i'}{\partial t} + \frac{u_i' \partial u_i'}{\partial t} = \ldots .
\]

\[
\frac{\partial u_i}{\partial t} = \ldots .
\]

Let $u_j' u_j' = R_{ij}$ The final full equation is:

\[
\frac{\partial R_{ij}}{\partial t} + u_k \frac{\partial}{\partial x_k} R_{ij} = P_{ij} + T_{ij} - D_{ij} - \frac{2}{\partial x_k} J_{ijk}
\]

\[P_{ij} = - (R_{ik} \frac{\partial u_i}{\partial x_k} + R_{ik} \frac{\partial u_i}{\partial x_k}) \quad \text{Production, closed}
\]

\[J_{ijk} = - \nu \frac{\partial}{\partial x_k} R_{ij} + u_i' u_j' u_k' + \frac{1}{\rho} (u_i' p' \delta_{ik} + u_i' p' \delta_{ik})
\]

\[D_{ij} = \frac{\partial}{\partial x_k} \frac{\partial u_i}{\partial x_k} + \frac{\partial}{\partial x_k} \frac{\partial u_j}{\partial x_k}
\]

\[T_{ij} = \frac{1}{2} p' \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)
\]
\(\mathbf{J}_{ijk} - \) Transport, requires modeling

\[\frac{2}{\varepsilon_{x_k}} u_i' u_j' u_k' \leq \text{turbulent transport of } u_i' u_j' \]

\[u_i' p' S_{i,k} + u_i' p' \delta_{i,k} \quad \text{-- Not really know how this part behaves} \]

DNS suggests it is small. So either ignore or absorb into \(u_i' u_j' u_k' \)

Modeling of \(u_i' u_j' u_k' \)

Simplest \(u_i' u_j' u_k' \sim \frac{\partial u_i' u_j'}{\partial x_k} \leq \text{gradient transport} \)

but \(u_i' u_j' u_k' \) is "rotationally invariant" (symmetric in all indices)

So take form:

\[C_{ijk} = \frac{2}{3} C \left(\frac{\partial u_i' u_j'}{\partial x_k} + \frac{\partial u_i' u_k'}{\partial x_j} + \frac{\partial u_j' u_k'}{\partial x_i} \right) \]

\[\uparrow \]

\(v_t \)

(Not only model -- variations exist)
Dissipation:

\[D_{ij} = 2 \nu \frac{\partial u_i'}{\partial x_k} \frac{\partial u_j'}{\partial x_k} \]

Assuming \(D_{ij} \) is a small scale process, \(D_{ij} \) should be isotropic.

\[D_{ij} = \frac{\nu}{3} \delta_{ij} \]

\[\varepsilon = \nu \frac{\partial u_i'}{\partial x_k} \frac{\partial u_j'}{\partial x_k} \] obtained from \(\varepsilon \) equation.

Not isotropic near walls - add damping & non-isotropy.

Pressure Strain

The pressure & velocity correlations that appear on the Reynolds stress equation can be decomposed in several ways. As done here (which is common), we are left with a "pressure-strain term":

\[\frac{1}{2} p' \left(\frac{\partial u_i'}{\partial x_j} + \frac{\partial u_j'}{\partial x_i} \right) = T_{ij} \]

This must be modeled. What to do?

To gain some understanding, an equation for the fluctuating pressure can be derived.

Before doing this, note \(T_{ii} = 0 \) (for incompressible flow) so it does not contribute to kinetic energy. It redistributes energy between various Reynolds stress components (See Pope, pg 353).
To derive an equation for p', note the following:

Take full N.S. equation:

$$\frac{Du_i'}{Dt} + u_j' \frac{\partial u_i'}{\partial x_j} + u_i' \frac{\partial u_j'}{\partial x_j} - \frac{\partial u_ju_i'}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p'}{\partial x_i} + \nu \frac{\partial^2 u_i'}{\partial x_i \partial x_j}$$

Subtract mean momentum:

For an incompressible flow, this gives

$$\frac{Du_i'}{Dt} + u_j' \frac{\partial u_i'}{\partial x_j} + u_i' \frac{\partial u_j'}{\partial x_j} - \frac{\partial u_ju_i'}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p'}{\partial x_i} + \nu \frac{\partial^2 u_i'}{\partial x_i \partial x_j}$$

Next, take $\nabla \cdot$:

This gives

$$\nabla \cdot u' = -\frac{\partial (u_ju_i' - u_iu_j')}{\partial x_i} - 2 \frac{\partial u_i'}{\partial x_i} \frac{\partial u_i'}{\partial x_i}$$

This can be solved by integrating along a line and applying Green's theorem (See pg 19 in Pope).

Solution is:

$$\frac{\mathcal{E}^k}{S} = \frac{1}{4\pi} \int_{Vol.} \left\{ \frac{\partial^2 (u_j u_i' - u_i u_j')}{\partial x_i \partial x_j} + 2 \frac{\partial u_i'}{\partial x_i} \frac{\partial u_i'}{\partial x_i} \right\} \frac{dV}{p}$$

To get the pressure-strain correlation, multiply the above by $\frac{\partial u_i'}{\partial x_i} \frac{\partial u_j'}{\partial x_j}$ and average

$$\frac{\partial}{\partial x_i} \left(\frac{\partial u_k'}{\partial x_j} + \frac{\partial u_j'}{\partial x_k} \right) = \frac{1}{4\pi} \int_{Vol.} \left[\left(\frac{\partial^2 u_k u_i'}{\partial x_k \partial x_i} \right) - \left(\frac{\partial u_i'}{\partial x_i} + \frac{\partial u_i'}{\partial x_i} \right) \right] \frac{dV}{p}$$

$$+ \frac{1}{4\pi} \int_{Vol.} \left[2 \frac{\partial u_k}{\partial x_m} \frac{\partial u_m'}{\partial x_k} \right] \left(\frac{\partial u_i'}{\partial x_i} + \frac{\partial u_i'}{\partial x_i} \right) \frac{dV}{p}$$
The standard interpretation of this is that there is a "rapid" and "slow" part.

The first term contains only turbulence quantities and is termed "return to isotropy" or "slow distortion" (Ti$_i^S$).

For $i=j$, $T_{ii}^S = 0 = T_{ij}$.

Things we say in modeling 2nd order closure:
- Turbulence quantities are local functions of $u'_i u'_j, k, e, u_i$, etc.
- Consistent in symmetry
- Turbulent phenomena characterized by single scale based on k, e
- Small eddies isotropic

So say $T_{ij}^S = -\frac{C}{t} u'_i u'_j$ and decay

but require $T_{ii}^S = 0$

so $T_{ij}^S = -\frac{C}{t} \left(u'_i u'_j - \frac{2}{3} \delta_{ij} k \right)$

$$=-\frac{C}{k} \left(u'_i u'_j - \frac{2}{3} \delta_{ij} k \right) \quad \text{(Pope eq. 11.24)}$$

This is earliest model (Rotta, 1951)

Advanced ideas: Real process of redistribution is nonlinear & modeling should reflect this.

Pope 11.3.3

C has taken on wide range of values.
"Rapid" Pressure strain "rapid distortion" "rapid return to isotropy"

\[T_{ij}^r = \frac{1}{4\pi} \int \left[2 \left(\frac{\partial u_i}{\partial x_k} \frac{\partial u_j}{\partial x_l} \right) \left(\frac{\partial u_j}{\partial x_l} + \frac{\partial u_i}{\partial x_l} \right) \right] \frac{\mathrm{d}V}{r^2} \]

Named "rapid" since there is an instantaneous response in this correlation to mean velocity gradients.

Simplest modeling approach

Approximate \(T_{ij}^r \) by shrinking down size of integration volume:

\[T_{ij}^r = C \frac{\partial u_i}{\partial x_k} \frac{\partial u_j}{\partial x_l} \left(\frac{\partial u_i}{\partial x_l} + \frac{\partial u_j}{\partial x_l} \right) \frac{\ell^3}{l} \]

The assumption here is all turbulent transport quantities are local functions of \(k, \varepsilon, u_i u_i', \bar{u}, \) etc.

For proper symmetry, \(T_{ii}^r = 0 \), and correct scaling we can write:

\[T_{ij}^r = C \left(\frac{\partial u_i}{\partial x_m} \frac{u_i u_i'}{x_m} + \frac{\partial u_i}{\partial x_m} \frac{u_j u_j'}{x_m} - \frac{2}{3} \delta_{ij} \frac{\partial u_k}{\partial x_m} \frac{u_k u_k'}{x_m} \right) \]

\[-P_{ij} \]

\[T_{ij}^r = -C \left(P_{ij} - \frac{2}{3} \delta_{ij} P \right) \]

For high strain

\[(2 \delta_{ij} \delta_{ij})^{\frac{1}{2}} >> \frac{\varepsilon}{k} \quad \Rightarrow \quad T_{ij}^r \quad \text{dominates} \]

See RDT (Pope, pg. 404)

General modeling more sophisticated than above.
Boundary Conditions:

At walls:

No slip applies

Problems: 1) Steep gradients \(\Rightarrow\) require very high resolution

2) Viscous effects important \& high Re turbulence models (i.e. \(u^+\)) not applicable

A Solution: Use empirical laws to connect wall conditions (i.e. wall shear stress) to dependent variables outside viscous sublayer

From momentum equation, near wall velocity profile can be approximated by

\[
U^+ = \frac{1}{K} \ln y^+ + C
\]

\[
U^+ = \frac{U}{U^*}, \quad U^* = \left(\frac{\tau_w}{\rho_c}\right)^{1/2}, \quad \tau_w = \mu \frac{dU}{dy} \text{ wall}
\]

\[
\gamma^+ = \frac{U^* y}{V}
\]

Very near wall (\(\gamma^+ \lesssim 10\)), viscous effects dominate

For \(\gamma^+ > 10\), can write \(U^+ = \frac{1}{K} \ln E y^+\)

\(E = 9\) for smooth walls

Solve regular \(k, \epsilon\) equations in turbulent zone

Use wall \(f^+\) for near wall \& to get \(u\) at first mesh point

33503
Solution B:

Wall models not always adequate

e.g. separated flows
unsteady flows
transitional Re

Cannot predict things directly near wall

Low Reynolds # approach using wall damping

Typical set

\[-u_i'u_j' = \nu_t \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \delta_{ij} k\]

Where \(\nu_t = C_{nu} \frac{f_m}{E} \)

\(E = \bar{E} + D \)

Tabulated for various models in Chen & Jow pg. 117-118

\(\bar{E} = \nu \frac{\partial}{\partial x_j} (C_n \frac{f_m}{E} \frac{\partial k}{\partial x_j} + \nu \frac{\partial k}{\partial x_j}) - u_i'u_j' \frac{\partial u_i}{\partial x_j} - \bar{E}\)

\(\frac{\partial \bar{E}}{\partial t} = \frac{2}{\partial x_j} \left(C_n \frac{f_m}{E} \frac{\partial E}{\partial x_j} + \nu \frac{\partial E}{\partial x_j} \right) - C_{e_1} f_1 \frac{\bar{E}}{k} u_i'u_j' \frac{\partial u_i}{\partial x_j} \)

\(f_m \)

\(f_1 \) involve \(y, y^+, \nu, k \)

\(f_2 \) several variants exist