Lecture 16: Kinetics of Phase Growth in a Two-component System:

dilute-solution approximation

Today’s topics

- Kinetics of phase growth (transformation) in a two-component system: atom A and B form two phases α and β, which are dominated by A and B, respectively. Upon cooled from a pure α phase to a low temperature, β particles precipitate in the α matrix. How fast these particles can grow depends on the diffusion of B atoms towards to the particle, as well as the diffusion of A atoms away from the particle.
- To make the kinetics analysis simple, we assume a dilute solution of α phase containing small molar fraction of β phase, i.e., molar fraction of B (X_B) \ll molar fraction of A (X_A). In such a case, the growth of β particle depends on only the diffusion of B atoms.
- The overall kinetics of the β particle growth is determined by the diffusion flux of B atoms across the α/β interface around the particle. The diffusion flux is primarily driven by the chemical potential difference of B atoms within the β phase and that in the proximity α matrix around the particle, $\mu_B^\alpha(C_\alpha) - \mu_B^\beta(C_\beta) = \mu_B^\alpha(C_\alpha) - \mu_B^\alpha(C_\alpha)$.
- When the β particle grows sufficiently large so that the surface energy can be ignored, the diffusion flux of B atoms across the α/β interface can be simply described to be proportional to the concentration difference between the concentration of B atoms within the proximity α matrix around the particle (C_i) and the equilibrium concentration of B atoms within the bulk α matrix (C_e).

The following kinetics treatment applies only to the dilute-solution of α phase containing small molar fraction of β phase, i.e., molar fraction of B (X_B) \ll molar fraction of A (X_A).

Consider a binary phase diagram of the type shown in the above figure, where α phase is assumed to be dilute solid solution containing small fractions of β phase.

Initially, the sample is a homogeneous, single phase α of composition x_0 (mole fraction of B). The
corresponding concentration of B, **number of B atoms/unit volume** is \(C_0 \). The alloy is then cooled to a temperature \(T_1 \), at which the equilibrium composition of \(\alpha \) and \(\beta \) are respectively \(C_\alpha \) and \(C_\beta \), where \(C_0 > C_\alpha \).

The free energy (G) vs. composition diagram at \(T_1 \) can be drawn as below.

--- Please refer to the “**additional readings**” (provided online at our course website) for how to draw a molar free energy curve (\(G \) vs. \(X_B \)) for a binary phase system \(\alpha/\beta \), and its relationship with phase diagram, as well as how to get chemical potential \(\mu \) of each of the two component A and B in the \(\alpha \) and \(\beta \) phase.

\[
\mu_B^{\alpha}(C_r) = \mu_B^{\beta}(C_\beta) + \frac{2\gamma_{\alpha B} V^M_{\alpha}}{r} \\
= \mu_B^{\beta}(\infty) + \frac{2\gamma_{\alpha B} V^M_{\alpha}}{r} \quad \text{(Lecture 9)}
\]

From this diagram, when the \(\beta \) particle grows to be large, the surface energy contribution \(\frac{2\gamma_{\alpha B} V^M_{\alpha}}{r} \) becomes negligible, and the curve of \(G(r) \) lowers down to be the same as the \(G(\infty) \) --- as a result, the tangent point at the \(G_\alpha \) curve (\(C_r \), determined by the common tangent line between the \(G_\alpha \) and \(G(r) \) curves) moves to the left to be the same as \(C_r \), i.e, \(C_r \rightarrow 0 \) or \(C_r \rightarrow C_\alpha \).

During the cooling, \(\beta \) particles precipitate in the \(\alpha \) matrix and grow. The growth of \(\beta \) particles requires that a flux of B atoms flow towards the growing \(\beta \) particles, and meanwhile, A atoms flow away from the growing \(\beta \) particles into the \(\alpha \) matrix. Thus, the diffusion flux must be described in terms of the interdiffusion coefficient,

\[
\tilde{D} = X_A D^C_B + X_B D^C_A
\]

for an atomic (e.g., metallic alloy) solid solution (see Lecture 6).
With the initial assumption \(X_A >> X_B \) (\(X_A ->1, X_B ->0 \)) we have \(\tilde{D} = X_A D_B^C + X_B D_A^C \equiv X_A D_B^C \equiv D_B^C \). For dilute solution of \(B \), \(D_B^C \equiv D_B \), so, \(\tilde{D} \equiv D_B \)

--- implying that we can simply consider the only diffusion flux of \(B \) (neglect the flux of \(A \)).

For \(\beta \) particles to grow, \(B \) atoms must diffuse to the growing \(\beta \) particles and then cross the \(\alpha/\beta \) interface to deposit onto the particle. Thus, there are two continuous processes: ① diffusion of \(B \) in \(\alpha \) ② transfer of \(B \) across the \(\alpha/\beta \) interface.

Assume the \(\beta \) particle growing as spherical shape, and essentially composing pure \(B \), then we can plot the concentration of \(B \) as a function of the radial coordinate \(\rho \) from the center of the \(\beta \) particle of radius \(r \):

Where \(C_r \) is the concentration of \(B \) in \(\alpha \) matrix in the proximity around the growing \(\beta \) particle of radius \(r \).

Assume \(\beta \) particle to be much larger than the critical size, i.e., \(r >> r^* \), so we neglect the effect of surface energy and chemical potential, i.e., \(\frac{2 \gamma_{\alpha\beta} V_M^\beta}{r} \) is very small, then \(\mu_B^a(C_\beta) \to \mu_B^a(C_\alpha) = \mu_B^0(C_\beta) \), or \(C_r \to 0 \) or \(C_r \to C \), as indicated above in the free energy curve.

Since \(\alpha \) is a dilute solution of \(B \) in \(A \), the Henry’s law applies,
\[
\mu_B^a = \mu_B^0 + RT \ln(\gamma_H C)
\]
where \(\gamma_H \) — Henrian activity coefficient in the unit of cm\(^3\), and the concentration is in the unit of # of atoms/cm\(^3\) instead of mole fraction.

Then we have the chemical potential for the three concentrations:
\[
\mu_B^a(C_0) = \mu_B^0 + RT \ln(\gamma_H C_0) \\
\mu_B^a(C_r) = \mu_B^0 + RT \ln(\gamma_H C_r) \\
\mu_B^a(C_\alpha) = \mu_B^0 + RT \ln(\gamma_H C_\alpha)
\]

since, \(C_0 > C_r > C_\alpha \), then we have
\[
\mu_B^0(C_0) > \mu_B^a(C_r) > \mu_B^a(C_\alpha) = \mu_B^0(C_\beta)
\]
Implied thermodynamic driving force for the diffusion of B atoms from the matrix α to the growing β particle. This diffusion flux occurs firstly by diffusion in the α phase from C₀ to Cᵣ. Once B atoms arrive at the α/β interface, they can cross the interface to deposit onto the β particle because \(\mu_B^\alpha(C_r) > \mu_B^\beta(C_\beta) = \mu_B^\alpha(C_\alpha) \).

Description of the diffusion flux of B atoms across the α/β interface:

Such flux, as marked as \(J \), must be proportional to the thermodynamic driving force:

\[
J \propto 1 - \exp\left\{ -\frac{[\mu_B^\alpha(C_r) - \mu_B^\beta(C_\beta)]}{RT} \right\} = 1 - \exp\left\{ -\frac{[\mu_B^\alpha(C_r) - \mu_B^\beta(C_\alpha)]}{RT} \right\} \quad \text{(see Lecture 2, 3)}
\]

If \(\mu_B^\alpha(C_r) - \mu_B^\beta(C_\alpha) \ll RT \), i.e., when \(r \) grows sufficiently big, \(C_r \to C_\alpha \), \(\mu_B^\alpha(C_r) \to \mu_B^\alpha(C_\alpha) \)

\[
\exp\left\{ -\frac{[\mu_B^\alpha(C_r) - \mu_B^\beta(C_\alpha)]}{RT} \right\} \approx 1 - \frac{\mu_B^\alpha(C_r) - \mu_B^\beta(C_\alpha)}{RT}
\]

So, \(J \propto \mu_B^\alpha(C_r) - \mu_B^\alpha(C_\alpha) \)

\[
\propto RT \ln \left(\frac{C_r}{C_\alpha} \right)
\]

\[
\propto RT \ln \left[1 + \frac{C_r - C_\alpha}{C_\alpha} \right]
\]

As discussed above, when the β particle grows to be much larger than the critical size, \(C_r - C_\alpha \ll C_\alpha \)

Then, \(\frac{C_r - C_\alpha}{C_\alpha} \ll 1.0 \)

So, \(J \propto RT \frac{C_r - C_\alpha}{C_\alpha} \), Or, \(J = \frac{M' RT}{C_\alpha} (C_r - C_\alpha) \), where \(M' \) depends on T but not on composition.

Define \(M = \frac{M' RT}{C_\alpha} \) defined as an interface parameter, a measure of the transport kinetics of atoms across the α/β interface.

Then, \(J = M \quad (C_r - C_\alpha) \quad (1) \)

Where C has the unit of #/cm³, M has the unit of cm/sec.

If the interface thickness is \(\delta \) (a few Å), the M equals to the diffusion coefficient across the interface divided by \(\delta \).

\(M = \frac{D}{\delta} \).

The process is clearly not a steady state process. However, we assume the changes with time is slow, i.e., a quasi-steady-state process.