Lecture 17: Relays and Motors
A relay is a device that responds to a small current or voltage change by activating a switches or other devices. Used to remotely switch signals or power. Input control usually electrically isolated from output. Input signal determines whether switch is open or closed.
Various Relay Configurations

- Single pole Single throw Normally open
- Single pole Single throw Normally closed
- Single pole Double throw
- Single pole Double throw
- Double pole Double throw
Classic general-purpose relays have EM coils and can switch power.

Solid-state relays (SSR) have input-triggered semiconductor switches.

Reed relay has an EM coil and can switch low level DC signals.

The bilateral switch uses CMOS, FET, or biFET transistors (technically not a relay but behaves similarly).
Types of Relays
Double Pole Double Throw (DPDT)

- Contact which is normally closed
- Leaf Spring Pole
- Armature Fulcrum
- Armature
- Armature Return Spring
- Frame
- Electromagnetic Coil
- Contact which is normally open
- Contact gap
Input circuit is an EM coil with an Iron Core.
Output switch includes two sets of silver or silver-alloy contacts (poles).
One set is fixed to the relay frame, and other is located at end of leaf spring poles connected to the armature.
Contacts held in “normally closed” position by the armature return spring.
When input circuit energizes EM coil, a “pull-in” force is applied to the armature and “normally closed” contacts break while “normally open” contacts are made.
Solid State Relays

Developed to solve limited life expectancy and contact bounce problems since they have no moving parts.
Also, faster, insensitive to vibrations, reduced EMI, quieter, and no contact arcing.
Optocoupler provides isolation between the input circuit (pseudocoil) and the triac (pseudocontact).
Signal from phototransistor triggers the output triac so that it switches the load current.
Zero-voltage detector triggers triac only when AC voltage is zero, reducing surge currents when triac is switched.
Once triggered, triac conducts until next zero crossing.
Solid State Relays
Reed Relays

Single Pole Single Throw (SPST) Reed Relay

- Protective cover
- Electromagnetic coil windings
- Contact terminal
- Reed capsule
- Bobbin
- Coil terminal
- Reed contacts
- Contact terminal
- Coil terminal
Solenoids

- Electromagnetic coil windings
- Frame
- Solenoid
- Direction of motion
- Armature
- Coil terminal
DC motor also has frame that remains motionless and an armature that moves in this case in a circular manner. When current flows through EM coil, magnetic force created that causes rotation of the shaft. Brushes positioned between frame and armature used to alternate the current direction through the coil so that a DC current generates a continuous rotation of the shaft. When current removed, shaft is free to rotate. Pulse-width modulated DC motor activated with fixed magnitude current but duty cycle varied to control speed.
Interface circuit must provide sufficient current and voltage to activate the device.

In off state, input current should be zero.

Due to inductive nature of the coil, huge back electromotive force (EMF) when coil current is turned off.

Due to high speed transistor switch, there is a large $\frac{di}{dt}$ when the coil is deactivated (activation also but smaller).

Voltages can range from 50 to 200V.

To protect the driver electronics, a snubber diode is added to suppress the back EMF.
Controlling a Relay with Digital Logic

Fig A

Fig B

Fig C

Fig D
Relay and Motor Interfaces
Isolated Interfaces
H-Bridge

[Diagram of an H-Bridge circuit with transistors Q1, Q2, Q3, Q4, PNP, NPN, B, C, E, off, on, Motor coil, Current flow]
Isolated H-Bridge with Direction Control
Stepper Motors

Very popular due to inherent digital interface.
Easy to control both position and velocity in an open-loop fashion.
Though more expensive than ordinary DC motors, system cost is reduced as they require no feedback sensors.
Can also be used as shaft encoders to measure both position and speed.
Stepper Motors
Simple Stepper Motor Interface

- Single chip microcontroller
 - CPU
 - RAM
 - ROM

- Stepper Motor
 - Output port
 - PB3: High, Low
 - PB2: Low, Off
 - PB1: High, Low
 - PB0: Low, Off

- 75492
- 1N914
- Current flow
- +5

- 4 phase permanent magnet stepper motor
- Clockwise rotation
- Shaft
- 1010, 1001, 0101, 0110, 1011
- 1.8°
Stepper Motor Sequence

<table>
<thead>
<tr>
<th>PortB</th>
<th>A</th>
<th>A’</th>
<th>B</th>
<th>B’</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>activate</td>
<td>deactivate</td>
<td>activate</td>
<td>deactivate</td>
</tr>
<tr>
<td>9</td>
<td>activate</td>
<td>deactivate</td>
<td>deactivate</td>
<td>activate</td>
</tr>
<tr>
<td>5</td>
<td>deactivate</td>
<td>activate</td>
<td>deactivate</td>
<td>activate</td>
</tr>
<tr>
<td>6</td>
<td>deactivate</td>
<td>activate</td>
<td>activate</td>
<td>deactivate</td>
</tr>
</tbody>
</table>
Stepper Motor Basic Operation

- **Stator**
- **Poles**
- **Electromagnets**

- **Rotor**
- **Shaft**
- **South**
- **North**
- **Tooth pitch**
Stepper Motor Basic Operation (cont)
Bipolar Stepper Motor Interface
A *slip* is when computer issues a sequence change, but the motor does not move.

Occurs if load on shaft exceeds available torque of motor.

Can also occur if computer changes output too fast.

If initial shaft angle known and motor never slips, computer can control shaft angle and speed without position sensor.
Stepper Motor Sequence
const struct State{
 unsigned char Out; // Output
 const struct State *Next[2]; // CW/CCW
};
typedef struct State StateType;
typedef StateType *StatePtr;
#define clockwise 0 // Next index
#define counterclockwise 1 // Next index
StateType fsm[4]= {
 {10,{&fsm[1],&fsm[3]}},
 { 9,{&fsm[2],&fsm[0]}},
 { 5,{&fsm[3],&fsm[1]}},
 { 6,{&fsm[0],&fsm[2]}}};
unsigned char Pos; // between 0 and 199
StatePtr Pt; // Current State
Ritual to Control Stepper Motor

```c
void Init(void){
    Pos = 0;
    Pt = &fsm[0];
    DDRB = 0xFF;
}
```
void CW(void){
 Pt = Pt->Next[clockwise]; // circular
 PORTB = Pt->Out; // step motor
 if(Pos==199){ // shaft angle
 Pos = 0; // reset
 }else{
 Pos++;}} // CW

void CCW(void){
 Pt = Pt->Next[counterclockwise];
 PORTB = Pt->Out; // step motor
 if(Pos==0){ // shaft angle
 Pos = 199; // reset
 }else{
 Pos--;}} // CCW
void Seek(unsigned char desired){
 short CWsteps;
 if((CWsteps=desired-Pos)<0){
 CWsteps+=200;
 } // CW steps is 0 to 199
 if(CWsteps>100){
 while(desired!=Pos){
 CCW();
 }
 }
 else{
 while(desired!=Pos){
 CW();
 }
 }
}
Stepper Motor as Shaft Position Sensor

[Diagram of a circuit involving a stepper motor and position sensors using LM339 comparators and diodes.]
Timing of Stepper Motor as Shaft Position Sensor

clockwise

V₁
Out₁
V₂
Out₂

counterclockwise

V₁
Out₁
V₂
Out₂

hysteresis
2.5V
Today

Relays
Stepper motors