1. (20%) Write a proof, from first principles (by building the D function) for Halt_{TM} being undecidable. $\text{Halt}_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that halts on } w \}$. Follow the structure of arguments given on Page 1 of http://www.eng.utah.edu/~cs3100/lectures/l27/notes27.pdf

* Suppose there is a decider "H" for Halt_{TM}.

* $H(M,w)$ accepts if M will halt on w, and rejects otherwise.

* Derive a contradiction as follows. Define a machine D

* $D(M) =$

 if $H(M,M)$ ACCEPTS, -- i.e. M halts on M
 then LOOP -- D rejects M
 else ACCEPT -- D accepts M when M does not halt on M

* Now does D halt on D? I.e. does $D(D)$ halt or loop?

* $D(D) = H(D,D)$

 - if $H(D,D)$ accepts, i.e. D halts on D, then D loops on D

 - if $H(D,D)$ rejects, i.e. D loops on D, then D halts on D

* The contradiction is complete. Hence H cannot exist.

2. (20%) Write a detailed mapping reduction proof from Halt_{TM} to A_{TM}, showing details similar to those in Figure (a), Page 2, http://www.eng.utah.edu/~cs3100/lectures/l27/notes27.pdf

* Given an M and w, make a copy of M (calling it M'), and then change every accept state to a non-accept state, and vice versa.

* Now, given A_{TM}, build a decider for Halt_{TM} as follows:

 - Feed M,w to one copy of A_{TM}, calling this A_{TM}‘s outputs a_1 and r_1

 - Feed M',w to another copy of A_{TM}, calling this A_{TM}‘s output a_2 and r_2

 - Now what truth-tables are possible?
3. Explain what the sets A and B of Figure (b) are for these proofs. Write out the “if and only if” style proof “punchline” (e.g. $x \in A$ if and only if $f(x) \in B$; hence a solver for B would solve A) to make sure you understand what is going on. You can get ideas on how to write from Page 2.

- $(5\%) \ A_{TM} \leq m \ PCP$.
 We build the mapping reduction in such a way that

 $M,w \in A_{TM}$ if and only if $Puzzle_{\{M,w\}}$ has a solution.

- $(5\%) \ PCP \leq m \ CFG_{amb}.$ Here, CFG_{amb} is the language of CFG encodings that are ambiguous.
 Here, we build a mapping reduction in such a way that

 $P \in Solvable_{PCPs}$ if and only if $CFG_{\{P\}}$ is unambiguous.

4. (40%) Encode the following Lewis Carroll puzzle using the DDCal tool and find a proof. You may have to strengthen the given conditions. Thoroughly explain how BDDs helped you solve this puzzle (one-page description).

I’ll help you by giving a template, below.

```
# A puzzle by Lewis Carroll :
#
# From the premises
#
#(a) None of the unnoticed things, met with at sea, are mermaids.
#
#(b) Things entered in the log, as met with at sea, are sure to be worth remembering.
#
#(c) I have never met with anything worth remembering, when on a voyage.
#
#(d) Things met with at sea, that are noticed, are sure to be recorded in the log.
#
# Prove that I have never met with a mermaid at sea
#
# N = it is noticed, M = it is a mermaid, L = entered in log,
# R = worth remembering, I = I have met with it at sea, T = met at sea
#
# First specify the desired variable ordering. DDCal can later reorder
```
\[\text{var} = T * N * M * L * R * I \]

#(a) None of the unnoticed things, met with at sea, are mermaids.
\[A_1 = T * \neg N \rightarrow \neg M \]

#(b) Things entered in the log, as met with at sea, are sure to be worth remembering.
\[A_2 = T * L \rightarrow R \]

#(c) I have never met with anything worth remembering, when on a voyage.
\[A_3 = I \rightarrow \neg R \]

#(d) Things met with at sea, that are noticed, are sure to be recorded in the log.
\[A_4 = T * N \rightarrow L \]

Prove that I have never met with a mermaid at sea
\[\text{proofGoal} = M \rightarrow \neg I \]

Negate proof-goal and add it in
\[\text{contra1} = A_1 * A_2 * A_3 * A_4 * \neg \text{proofGoal} \]

Oops, need frame axiom: not met at sea \rightarrow I have not met with it at sea
\[\text{frame} = \neg T \rightarrow I \]

\[\text{contra} = \text{contra1} * \text{frame} \]

[contra1 contra]

5. (10%) Write a one-page writeup on NP-completeness. Read about NP-complete problems in http://en.wikipedia.org/wiki/NP-complete. Mention some of the common NP-complete problems. Elaborate on some of the common misunderstandings about NP-complete problems that are listed there. You may survey other sources also - but please cite every source you survey!

Summarize well.