Background

The manufacture of polycrystalline diamond (PCD) simultaneously may involve pressures in excess of 8 GPa and temperatures over 1400°C. Generating these extreme conditions in an environment large enough to produce PCD for high wear applications is a serious materials challenge.

A cubic press allows large volume production of PCD. This works by placing the required sintering components within a high pressure high temperature (HPHT) compatible cube. As the anvils compress, the cube gasket material seals in the pressure while simultaneously insulating the anvils from the high temperatures at the core of the cell.

Gasket properties are critical to obtaining higher pressures and preventing damage to the cubic press. In situ experimentation with new cube materials is undesirable due to the high risk of causing costly damage to the press. Therefore, we must use ex situ material characterization to minimize in situ damage.

A given gasket material must be:
- Mechanically robust
- Capable of extreme plastic deformation without fracture
- A thermal barrier

The risk of new material experimentation can be significantly mitigated by ex situ assessment of the material’s performance in each of the above categories.

Hypothesis

Mechanical/Rheological Testing:
- Reducing free moisture content should strengthen the gasket material. The crystal structure of phyllosilicates, such as pyrophyllite (right), contains crystalline moisture that can be released at high enough temperature. Bake temperatures should be kept low enough to avoid a change in crystal structure.
- A new fixture could be designed to simulate cubic press gasket geometry for ex situ testing. Axial force versus axial displacement curves will show the material’s ability to initially resist flow, the point of failure, and its ability to act as a gasket.

Thermal Barrier:
- Low thermal conductivity is required to protect the anvils from the high temperatures. Modeling has shown the material should have a thermal conductivity of 4 W/m*K or lower [1].

Materials & Methods

- Material variables: composition and bake temperature.
 - Temperature 0 = Temperature 1 < Temperature 2
 - Samples were prepared by uniaxial pressing.

Results (continued)

Moisture Content

Total moisture content of Composition A (left) is lower than Composition B (right) due to lower phyllosilicate content. Both graphs show unchanged peak size in the crystalline moisture regime.
- Two distinct sets of peaks: free vs. crystalline moisture. Initial moisture loss is coming from the free moisture in the binding material and not chemically altering the phyllosilicates.
- Trapped intergranular moisture due to uniaxial pressing of samples causes the free moisture peak to extend past 105°C and into the 600°C ramp.

Conclusions

- The force vs. displacement curves developed with the rheology fixture indicate that new compositions could be directly compared and screened for use on a cubic press even though the test does not fully replicate the cubic press environment.
- Rheological and thermal properties can be altered by either composition or by bake temperature.
- All results show definite distinctions between compositions for mechanical robustness, flow, moisture, and thermal conductivity. Thus, the ex situ measurements may enable customization of experimental compositions to mitigate the risk of damage to the cubic press.

Future Work

- Correlate data to:
 - Mechanical strength
 - Coefficient of internal friction
 - Determine coefficient of friction for die wall interaction.
 - Build more representative test that includes elevated temperature.

Acknowledgements/References

- Thanks to Dr. Taylor D. Sparks of the University of Utah for his time, insight, and direction.
- Thanks to US Synthetic for sponsorship and the use of their testing facilities.