A Recommendation Engine for Suggesting Unexpected Thermoelectric Chemistries: Characterization of RE_{12}Co_{5}Bi (RE=Gd,Er)

Taylor D. Sparks¹, Michael W. Gaultois², Anton O. Oliynyk³, Arthur Mar³, Gregory J. Mulholland⁴, and Bryce Meredig⁴

¹Department of Material Science and Engineering, Utah State University, Salt Lake City, Utah 84112, USA
²Department of Chemistry, University of Cambridge, Cambridge CB21EW, United Kingdom
³Department of Chemistry, University of Alberta, Edmonton, Alberta T6G2G2, Canada
⁴Citrine Informatics, Redwood City, California 94063, USA

Most thermoelectric research is incremental

Maximum ZT has been steadily increasing with time but these tend to be outliers. The average ZT has been slowly declining. Exploring new compounds is high risk and low probability of success.

New tools of discovery are needed to explore chemical white space

Traditional approaches for materials research in thermoelectrics and other technologies tend to rely on local optimization of known systems or chemical trial and error searches guided by limited chemical intuition. Data mining could provide the bases for a new machine learning based tool that generates materials recommendations with high probability of good performance.

A recommendation engine based on a large dataset has been created and validated

Leave-one-out cross-validation shows that the model has very few false positives or false negatives. This recommendation engine predicts probability of performance within a given range, not an actual calculated value.

Performance probability phase diagrams can be constructed quickly and easily

Prediction only requires composition, not crystal structure. This means that thousands of compounds can be screened in minutes. The four properties relevant to thermoelectrics (Seebeck Coefficient, electrical resistivity, thermal conductivity, and band gap) can be calculated for different phase space and plotted on a ternary diagram.

ReE_{12}Co_{5}Bi offers experimental validation in a new class of materials

The recommendation engine is a tool to explore chemical white space so we chose to validate this concept on a compound that is extremely different from standard thermoelectric materials. Model suggested high confidence in $S < 10 \ \mu V/K$ and low confidence in μ > 100 $\mu V/K$ and a band gap.

Measured properties agree well with predictions

Interestingly, thermal conductivity rises with increasing temperature. Synchrotron diffraction revealed subtle secondary phases hidden within the primary phase.

Unusual thermal transport led to subsequent detailed investigation of structure-property relationships

Single crystal phase space exploration led to the discovery of a new crystal structure which was very structurally and chemically similar to our expected composition.

RE_{12}Co_{5}Bi has additional Co disorder compared to RE_{12}Co_{5}Bi

Electron density map shows two distinct sites, not one elongated site. This leads to the different electrical resistivity with temperature but the thermal conductivity was dramatically different.

http://thermoelectrics.citrination.com