LES of Turbulent Flows: Lecture 17

(ME EN 7960-008)

Prof. Rob Stoll

Department of Mechanical Engineering
University of Utah

Spring 2011

UTHE UNIVERSITY OF UTAH=




Dynamic SGS models

* So far we have given a general description of some commonly used SGS models

* All of these models include at least one model coefficient that must be prescribed
either based on theory with a specific set of assumptions (usually isotropy), from
experimental data, or chosen ad hoc to get the “correct” a posteriori results from
simulations.

* Germano et al. (PofF, 1991) developed a procedure to dynamically calculate these
unknown model coefficients (for scalars and compressible flow see Moin et al., PofF,
1991).

* Recall: Applying a low-pass filter to the N-S equations with a filter of characteristic
width A (denoted by ~) results in the unknown SGS stress term:

Tij = uiuj — uiuj @

* This term must be modeled with an SGS model to close our equation set.
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Dynamic SGS models

* We can apply another filter (referred to as a test filter) to the filtered N-S equations at
a larger scale (say 2A) denoted by a bar (=):

6’&@ 4 8@2’&] _ 8]5 i 1 82’%@ _ 8’7'@'3' i Fz
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* Our LES filter properties (commutation with differentiation) allows us to rewrite the 1
term on the LHS and the 15t and 2" terms on the RHS in standard filtered form.

* The convective term can be reformatted into our standard format using the same
method we used for the original filtered LES equations (see Lecture 5):
871ZZ~LJ 8 —_— = = = = 6&1@ 8@1‘&] — Uin
= U Uy — Uy + Uil ) =
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e where the 1t term is our standard form and we can move the 2nd term to the RHS of
our twice filtered equation and comblne it with the SGS force vector % to form our test

filtered SGS stress: Az - = ’

' .
Tw from the convective term

~ o~

e Qur SGS stress at the 2A level can now be written:
Tyj = wu; — Ut ()
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Dynamic SGS models

* We can also consider the stress at our smallest resolved scales (the Leonard stress we

discussed in Lecture 11): —

* Equations a, b and c can be combined algebraically as follows:

Lij =Ty — 7 () log(E(k))
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UiUj — UiU; = uzi; — ’[LZ"EL]' - uzi; + "ZLZ"ZLJ'

Graphically, this equation can be represented by =

A}

°@ is an identity, it is exact! It can be exploited to
derive model coefficients for common SGS models.
It is usually referred to as the Germano identity.

* We will use the Smagorinsky model as an example
of how we can use the Germano identity to find
model coefficients. Procedurally, we can follow the
same steps presented next for any base SGS model.
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Dynamic Smagorinsky Model

* The first assumption we must make is that the same model (e.g. Smagorinsky model)
can be applied for the stress at A and aA (or 2A).

» Using the Smagorinsky model in the Germano identity (Note Smagorinsky is only for
anisotropic part): 1

S
A S,

aa, — i, = —2(Con)' |35, +2(ca) |83,

* For the next parts we will follow Lilly (PofF, 1992)

* We can rearrange this equation to write an equation for the error associated with
using the Smagorinsky model in the Germano identity.

1 2 ~ 2| ~| ~
¢, =Ly, =30,Lu ~ [-z(cSaA) SIS, +2(CsA) ‘S‘SJ
* This can be rewritten as (note we will assume L is trace free)
€ij — Lij — CgMz

> M;; = 20’ [|S|§Z-j — 2

* Problem: This is 9 equations with only 1 unknown!

E”
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S
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Dynamic Smagorinsky Model

* Lilly (1992) proposed to minimize the error in a least-squares sense. That is, we want
the least-square error of using the Smagorinsky model in the Germano identity.

* The squared error is: ¢, = (Lij — CgMij)Q = L?j — 2C2L;; M;; + (C2)*M;; M,

ij —

De?.
We want the minimum with respect toC%, i.e.: OCZ% —0
de?. 5
~ 8(1% = —2Li;Mi; +205Mi;Mi; = 0
T
If we solve for C'2 => 02 — 27
’ S MM

* Problem: the above local form of the dynamic Smagorinsky coefficient is numerically
unstable. Remember the energy cascade can be forward or backwards instantaneously.
In simulations this was found to lead to numerical instability (having ng).

* The instability is attributed to high time correlations of C% (i.e., when ng is negative
at a point it tends to stay negative)

* Why do we have this problem? We had to make 2 assumptions to derive the C%
equation!
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Assumptions in the Dynamic Model

e 15t Assumption:

- Cg is constant over the filter width aA (- filter in the equations)

— —

Recall our basic definition of a convolution filter: ¢(Z,t) = / o —(t)G(C)d

— 0

If look at our error equation (shown below), we notice that Cg falls under our bar

filter: 1 = 1 ~
&)=Ly~ 30l - [—2(CSOCA)2 S,+2(cgd) ‘S‘SJ

=>This is actually a set of integral equations if we don’t make our assumption!

S

* Ghosal et al. (JFM, 1995) solved this equation for Cg everywhere using a variational
method. This is very expensive and complex.

* The constant Cg with respect to the test filter assumption contributes to the
instability discussed previously.

* The typical method (instead of Ghosal et al’s method) is to enforce the Germano
identity in an average sense:
y & (Lij Mij)

> _
5= (M;; M;;)
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Assumptions in the Dynamic Model

- Constraining C’% removes its oscillations resulting in stable simulations. Typically,
the average is enforced over some region of spatial homogeneity. For example in
a homogeneous boundary layer over horizontal planes:

<> s an averaging operator e.g.
C% varies only with wall normal direction

- Meneveau et al. (JFM, 1996) developed the Lagrangian Dynamic model based on
the idea that the Germano identity should be enforced along fluid particle

trajectories => \_9
lllistration of Lagrangian averaging

T |

-Using 1%t order time and space estimates, the |
average of any quantity A (e.g., L)) can be

defined as: ~
n+1 n+1 n n A(x,
<A($)> = 8 [A(m)] " + (1 o 7) [A(m —u At)] AC (&")t") A(Z(t'g,t't))
h = AtjT™ dTisthel ian ti le that trol h f
wnere 7 = T At/T" an IS € Lagrangian timescale dat controls Nnow t1ar

back in time the average goes (see the figure to the right)
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Assumptions in the Dynamic Model

« 2nd Assumption:

- When we applied the Smagorinsky model to the Germano identity at 2 different
scales, we made the assumption that the same C%applies at both scales:

i.e. we assumed C'2(A) = C'2(2A) or scale invariance of C'3

-This assumption is not bad provided that both of our filter scales A and 2A are in the
inertial subrange of turbulence.

- For cases with at least 1 direction of flow anisotropy we will violate this assumption
in some regions of the flow (e.g., near the wall in a boundary layer when z < 2A)
- Porté-Agel et al., (JFM, 2000) developed a generalized dynamic model where Cg is a
function of scale.
- They made the weaker assumption that C’g follows a power law distribution at the
smallest resolved scales, e.g.: C%(QA) C§(4A)

Ci(A)  C3(24)
So that now in our equation fong we have M;; as:
C2(24)

M;; = 2A? (\§|§ij — a26]§\§ij> with Ia) = (3 the scale-dependence coefficient.
S
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