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Equations of Motion

Incompressible flow:
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Equations of Motion

* If we nondimensionalize these equations with a velocity scale and a length scale
(for example the Freestream velocity and the BL height in a boundary layer)

* We get (where the * is a nondimensional quantity):
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-Conservation of Mass: - =0
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- Conservation of Momentum:
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where Re is based on our velocity and length scales => Re =
1%

* For a general scalar quantity we have:
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where Sc is the Schmidt number, the ratio of the diffusivity of momentum (viscosity)
and the diffusivity of mass (for temperature we use the Prandtl number Pr). Scis of
order 1 (Pr for air = 0.72)
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Properties of the Navier-Stokes equations

* Reynolds number similarity: For a range of Re, the equations of motion can be
considered invariant to transformations of scale.

* Time and space invariance: The equations are invariant to shifts in time or space.
i.e., we can define the shifted space variable
¢ =%/L wherez =2 — X
ort=(t—T)U/L
 Rotational and Reflection invariance: The equations are invariant to rotations and
reflections about a fixed axis.

* Invariance to time reflections: The equations are invariant to reflections in time.
They are the same going backwards or forwards in time =>

t=—tU/L
* Galilean invariance: The equations are invariant to constant velocity translations.
T=x—Vt
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Approximating the equations of motion

* In Numerical studies, the equations of motion (incompressible, compressible or
Boussinesq fluid) must be approximated on a computational grid

* Three basic methodologies are prevalent in turbulence application and research:

* Direct Numerical Simulation (DNS) e Reynolds-Averaged Navier-Stokes (RANS)
- resolve all eddies - model just ensemble statistics

e Large-Eddy Simulation (LES)
- resolve larger eddies, model
smaller ‘universal’ ones
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Some Pros and Cons of each Method

Direct Numerical Simulation (DNS):

* Pros
- No turbulence model is required
- Accuracy is only limited by computational capabilities
- can provide reference data not available through experiments (i.e.,
unsteady 3D velocity and scalar fields)

* Cons
- Restricted to low Re with relatively simple geometries
- Very high cost in memory and computational time
- typically “largest-possible” number of grid points is used without proper
convergence evaluation.
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Some Pros and Cons of each Method

Large-Eddy Simulation (LES):

* Pros
- Only the small scales require modeling
- Much cheaper computational cost than DNS
- Unsteady predictions of flow are made => gain info about extreme events
in addition to the mean
- In principle, we can gain as much accuracy as desired by refining our
numerical grid

* Cons
- Basic assumption (small scales are universal) requires independence of
small (unresolved) scales from boundary conditions (especially important for
flow geometry).
- Still very costly in practical engineering applications
- Filtering and turbulence theory of small scales still needs development for
complex geometry and highly anisotropic flows
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Some Pros and Cons of each Method

Reynolds Averaged Navier-Stokes (RANS):

* Pros *Cons

- Low computational demand - Only steady flow phenomena are can
(can obtain mean stats in short time) be explored when taking full advantage
- can be used in highly complex geometry of computational reduction

- When combined with empirical information, - Models are not universal => usually

can be highly useful for engineering applications pragmatic “tuning” is required for

specific applications
A . - More accurate turbulence models
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