U
UNIVERSITY
OF UTAH

The Robustness of Estimator Composition
Pingfan Tang and Jeff M. Phillips | School of Computing, University of Utah

OF UTAH

Motivation of Estimator composition

Composite estimators arise in many scenarios in data analysis.

- Uncertain Data

Considering tracking n people. Get k readings of i th person's location P_{i}. Estimate the location of th person: $x_{i} \leftarrow E_{1}\left(P_{i}\right)$. Then summarize the entire group $E_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

- Data Analysis Pipeline. Estimators or analysis is performed on data at several stages, each composing estimation from prior stages. How robust is the composition of these estimators?

Definition of Breakdown Point

Informally, the breakdown point is the proportion of data which must be moved to infinity so that the estimator will do the same.

We define an estimator E as a function from the collection of some finite subsets of a metric space (\mathscr{X}, d) to another metric space ($\mathscr{X}^{\prime}, d^{\prime}$):

$$
E: \mathscr{A} \subset\left\{X \subset \mathscr{X}|0<|X|<\infty\} \mapsto \mathscr{X}^{\prime} .\right.
$$

Its finite sample breakdown point $g_{E}(n)$ (n is a positive integer) is

$$
g_{E}(n)=\max (M) \text { if } M \neq \emptyset \text { and } g_{E}(n)=0 \text { if } M=\emptyset
$$

with $\rho\left(x^{\prime}, X\right)=\max _{x \in X} d\left(x^{\prime}, x\right)$ and $M=\{m \in[0, n] \mid \forall X \in \mathscr{A}$, $|X|=n, \forall G_{1}>0, \exists G_{2}=G_{2}\left(X, G_{1}\right)$ s.t. $\forall X^{\prime} \in \mathscr{A}$, if $\left|X^{\prime}\right|=$ n and $\left|\left\{x^{\prime} \in X^{\prime} \mid \rho\left(x^{\prime}, X\right)>G_{1}\right\}\right| \leq m$ then $\left.d^{\prime}\left(E(X), E\left(X^{\prime}\right)\right) \leq G_{2}\right\}$. Asymptotic Breakdown Point:

$$
\beta=\lim _{n \rightarrow \infty} \frac{g_{E}(n)}{n}
$$

Asymptotic Onto-Breakdown Point:

Informally, the proportion of data which must be moved to change the estimator to any value. Technically defined:

$$
\lim _{n \rightarrow \infty} \frac{f_{E}(n)}{n}
$$

where $f_{E}(n)=\min (\widetilde{M})$ and $\widetilde{M}=\{0 \leq m \leq n|\quad \forall X \in \mathscr{A},|X|=$ $n, \forall y \in \mathscr{X}^{\prime}, \exists X^{\prime} \in \mathscr{A}$ s.t. $\left.\left|X^{\prime}\right|=n,\left|X \cap X^{\prime}\right|=n-m, E\left(X^{\prime}\right)=y\right\}$.

Main Theorems

Definition of $E 1-E 2$ Estimators, and their Robustness For two estimators:

$$
\begin{aligned}
& E_{1}: \mathscr{A}_{1} \subset\left\{X \subset \mathscr{X}_{1}|0<|X|<\infty\} \mapsto \mathscr{X}_{2}\right. \\
& E_{2}: \mathscr{A}_{2} \subset\left\{X \subset \mathscr{X}_{2}|0<|X|<\infty\} \mapsto \mathscr{X}_{2}^{\prime}\right.
\end{aligned}
$$

suppose $P_{i} \in \mathscr{A}_{1},\left|P_{i}\right|=k$ for $i=1,2, \cdots, n$ and $P_{\text {flat }}=\uplus_{i=1}^{n} P_{i}$ where \uplus means the union of multisets. We define

$$
E\left(P_{\text {tlat }}\right)=E_{2}\left(E_{1}\left(P_{1}\right), E_{1}\left(P_{2}\right), \cdots, E_{1}\left(P_{n}\right)\right) .
$$

Theorem. Consider estimators E_{1}, E_{2}, and E.

- Let β_{1} be the asymptotic breakdown point and the asymptotic onto-breakdown point of E_{1}.
- Let β_{2} be the asymptotic breakdown point of E_{2}.

Then the asymptotic breakdown point of E (the $E_{1}-E_{2}$ estimator) is $\beta=\beta_{1} \beta_{2}$.

- Onto Requirement. Without the introduction of asymptotic onto-breakdown point (and a few other omitted conditions) in the above theorem, we can only obtain $\beta_{1} \beta_{2} \leq \beta$.
- Multi-level Composition. Suppose $\beta_{1}, \beta_{2}, \beta_{3}$ and β are the asymptotic breakdown points of E_{1}, E_{2}, E_{3} and $E_{1}-E_{2}-E_{3}$ respectively. If E_{1}, E_{2} and E_{3} satisfies some similar conditions as above, then $\beta=\beta_{1} \beta_{2} \beta_{3}$.

Composing Quantiles

What happens without the onto condition on β_{1} ?

- $E_{1}: 0.25$ quantile, asymptotic breakdown point $\beta_{1}=0.25$, asymptotic onto-breakdown point $=0.75$
- $E_{2}: 0.75$ quantile, asymptotic breakdown point $\beta_{2}=0.25$, asymptotic onto-breakdown point= 0.75 .
- $E=E_{1}-E_{2}: E_{2}\left(E_{1}\left(P_{1}\right), E_{1}\left(P_{2}\right), \cdots, E_{1}\left(P_{n}\right)\right)$,

$$
\left|P_{1}\right|=\left|P_{2}\right|=\cdots=\left|P_{n}\right| .
$$

- $\beta_{1} \beta_{2}=0.25 \cdot 0.25=0.0625$.
- Breakdown point of E is $\beta=0.75 \cdot 0.25=0.1875$.
- For E_{1}, asymptotic breakdown point is not equal its asymptotic onto-breakdown point, so we only have $\beta_{1} \beta_{2}<\beta$.

Application: Significance Thresholds

In hypothesis testing, we desire the 0.05 significance level.

- $E\left(P_{\text {flat }}\right)=E_{2}\left(E_{1}\left(P_{1}\right), E_{1}\left(P_{2}\right), \cdots, E_{1}\left(P_{n}\right)\right), P_{\text {flat }}=\uplus_{i=1}^{n} P_{i}$ E_{2} : 95th percentile, from hypothesis testing.
- E_{1} : 50th percentile, the the breakdown point of $E_{1}-E_{2}$ estimator is $0.5 \cdot 0.05=0.025$.
- E_{1} : 5th percentile, the the breakdown point of $E_{1}-E_{2}$ estimator is $0.95 \cdot 0.05=0.0475$.

Preprocessing initial data (the E_{1} estimator) with other quantile (e.g. 5 th percentile) is more stable than the median. May introduce bias.

APPLICATION: L_{1}-MEDIAN OF L_{1}-MEDIANS

The L_{1}-median (point which minimizes sum of distance to data set) has asympotitic onto breakdown point of 0.5 .

- $E_{1}: L_{1}$-median ($\beta_{1}=0.5$), $E_{2}: L_{1}$-median ($\beta_{2}=0.5$).
$E=E_{1}-E_{2}$ estimator has $\beta=\beta_{1} \beta_{2}=0.25$.
- Consider $n=5$ sets of $k=8$ points each. Given an target point p_{0}, we only need to modify $\left\lceil\frac{n}{2}\right\rceil\left\lceil\frac{k}{2}\right\rceil$ points (in this case 12 points) so the estimator is equal to p_{0}

