

MOTIVATION OF ESTIMATOR COMPOSITION

Composite estimators arise in many scenarios in data analysis.

• Uncertain Data. Considering tracking *n* people. Get k readings of *i*th person's location P_i . Estimate the location of *ith* person: $x_i \leftarrow E_1(P_i)$. Then summarize the entire group $E_2(x_1, x_2, ..., x_n)$.

• Data Analysis Pipeline. Estimators or analysis is performed on data at several stages, each composing estimation from prior stages. How robust is the composition of these estimators?

DEFINITION OF BREAKDOWN POINT

Informally, the **breakdown point** is the proportion of data which must be moved to infinity so that the estimator will do the same.

We define an *estimator* E as a function from the collection of some finite subsets of a metric space (\mathscr{X}, d) to another metric space (\mathscr{X}', d') :

 $E: \mathscr{A} \subset \{X \subset \mathscr{X} \mid 0 < |X| < \infty\} \mapsto \mathscr{X}'.$

Its *finite sample breakdown point* $g_E(n)$ (*n* is a positive integer) is

 $g_E(n) = \max(M)$ if $M \neq \emptyset$ and $g_E(n) = 0$ if $M = \emptyset$ with $\rho(x', X) = \max_{x \in X} d(x', x)$ and $M = \{m \in [0, n] \mid \forall X \in \mathscr{A},$ $|X| = n, \forall G_1 > 0, \exists G_2 = G_2(X, G_1)$ s.t. $\forall X' \in \mathscr{A}, \text{ if } |X'| =$ $n \text{ and } |\{x' \in X' \mid \rho(x', X) > G_1\}| \le m \text{ then } d'(E(X), E(X')) \le G_2\}.$ **Asymptotic Breakdown Point:**

$$\beta = \lim_{n \to \infty} \frac{g_E(n)}{n}$$

Asymptotic Onto-Breakdown Point:

Informally, the proportion of data which must be moved to change the estimator to *any value*. Technically defined:

$$\lim_{n \to \infty} \frac{f_E(n)}{n} ,$$

where $f_E(n) = \min(\widetilde{M})$ and $\widetilde{M} = \{0 \le m \le n \mid \forall X \in \mathscr{A}, |X| =$ $n, \forall y \in \mathscr{X}', \exists X' \in \mathscr{A} \text{ s.t. } |X'| = n, |X \cap X'| = n - m, E(X') = y \}.$

THE ROBUSTNESS OF ESTIMATOR COMPOSITION

PINGFAN TANG and JEFF M. PHILLIPS

MAIN THEOREMS

Definition of E1-E2 **Estimators, and their Robustness** For two estimators:

 $E_1: \mathscr{A}_1 \subset \{X \subset \mathscr{X}_1 \mid 0 < |X| < \infty\} \mapsto \mathscr{X}_2,$

 $E_2: \mathscr{A}_2 \subset \{X \subset \mathscr{X}_2 \mid 0 < |X| < \infty\} \mapsto \mathscr{X}'_2,$

suppose $P_i \in \mathscr{A}_1$, $|P_i| = k$ for $i = 1, 2, \dots, n$ and $P_{\text{flat}} = \bigcup_{i=1}^n P_i$,

 $E(P_{\text{flat}}) = E_2(E_1(P_1), E_1(P_2), \cdots, E_1(P_n)).$

Theorem. Consider estimators E_1 , E_2 , and E_2 . • Let β_1 be the asymptotic breakdown point and the asymptotic

- onto-breakdown point of E_1 .
- Let β_2 be the asymptotic breakdown point of E_2 .
- Then the asymptotic breakdown point of E (the E_1 - E_2 estimator) is $\beta = \beta_1 \beta_2.$
 - Onto Requirement. Without the introduction of asymptotic onto-breakdown point (and a few other omitted conditions) in the above theorem, we can only obtain $\beta_1\beta_2 \leq \beta$.
 - Multi-level Composition. Suppose $\beta_1, \beta_2, \beta_3$ and β are the asymptotic breakdown points of E_1 , E_2 , E_3 and E_1 - E_2 - E_3 respectively. If E_1 , E_2 and E_3 satisfies some similar conditions as above, then $\beta = \beta_1 \beta_2 \beta_3$.

COMPOSING QUANTILES

What happens without the *onto* condition on β_1 ?

- E_1 : 0.25 quantile, asymptotic breakdown point $\beta_1 = 0.25$,
- E_2 : 0.75 quantile, asymptotic breakdown point $\beta_2 = 0.25$,
- $E = E_1 E_2$: $E_2(E_1(P_1), E_1(P_2), \cdots, E_1(P_n))$, $|P_1| = |P_2| = \cdots = |P_n|.$
- $\beta_1 \beta_2 = 0.25 \cdot 0.25 = 0.0625$.
- Breakdown point of E is $\beta = 0.75 \cdot 0.25 = 0.1875$.
- For E_1 , asymptotic breakdown point is not equal its asymptotic onto-breakdown point, so we only have $\beta_1\beta_2 < \beta$.

SCHOOL OF COMPUTING, UNIVERSITY OF UTAH

asymptotic onto-breakdown point = 0.75.

asymptotic onto-breakdown point = 0.75.

APPLICATION: SIGNIFICANCE THRESHOLDS In hypothesis testing, we desire the 0.05 significance level. 95th percenti' 5th percentile 50th percentile • $E(P_{\text{flat}}) = E_2(E_1(P_1), E_1(P_2), \cdots, E_1(P_n)), P_{\text{flat}} = \bigcup_{i=1}^n P_i$ E_2 : 95th percentile, from hypothesis testing. • E_1 : 50th percentile, the the breakdown point of E_1 - E_2 estimator is $0.5 \cdot 0.05 = 0.025$. • E_1 : 5th percentile, the the breakdown point of E_1 - E_2 estimator is $0.95 \cdot 0.05 = 0.0475$. • E_1 : L_1 -median ($\beta_1 = 0.5$), E_2 : L_1 -median ($\beta_2 = 0.5$). $E = E_1 - E_2$ estimator has $\beta = \beta_1 \beta_2 = 0.25$. • Consider n = 5 sets of k = 8 points each. Given an target point p_0 , we only need to modify $\lceil \frac{n}{2} \rceil \lceil \frac{k}{2} \rceil$ points (in this case 12 points) so the estimator is equal to p_0 . • • • • The given points that are not changed The given points that are changed The new locations for those changed points The medians of old subsets The medians of new subsets The median of medians for the given points The target point

Preprocessing initial data (the E_1 estimator) with other quantile (e.g., 5th percentile) is more stable than the median. May introduce bias.

APPLICATION: L_1 -MEDIAN OF L_1 -MEDIANS

The L_1 -median (point which minimizes sum of distance to data set) has asympotitic onto breakdown point of 0.5.

