
Design and Control of a Three-Link Serial Manipulator for Lessons in Particle Dynamics

Mark A. Minor, Assistant Professor 2nd LT. Kent Jensen, US Air Force Youngshik Kim, Graduate Student
Department of Mechanical Engineering

University of Utah, Salt Lake City, UT 84106
minor@mech.utah.edu

Abstract

Design, control, and performance of a ball-throwing robot
are examined in this paper. The objective of this project
is to provide an interactive ball-throwing robotic arm for
illustrating the roles of engineers and computer scientists
in the design and usage of such a system to high school or
pre-engineering students. Activities in particle dynamics
and trajectory calculation will provide basic hands on
engineering experience and the opportunity to interact
with the robot. In order to effectively provide this
activity, the robot must consistently throw the ball from a
known point with a desired velocity. This requires a
minimum of a two-link manipulator with control
strategies sufficient to converge two joint positions and
velocities simultaneously. Due to limited micro-controller
computational resources, feed-forward torques are
calculated offline based on 3rd order cubic spline
trajectories. Feedback compensation for position and
velocity error is then examined and compared for ball
throwing accuracy and precision to a technique
supplementing the previous controller with acceleration
error compensation. Experimental results are presented
that illustrate the improved accuracy and reduced
repeatability the later technique. Gripper design
providing consistent hold on the ball and rapid release is
also examined.

1. Introduction
Robotics research is consistently gaining attention
amongst students entering engineering curriculum. To
help pre-engineering and high school students gain a
better understanding of engineering disciplines and make
an educated decision about their career choice, the
University of Utah is developing an interactive ball
throwing robotic arm, Figure 1. The robot is designed to
illustrate the roles of the mechanical engineering,
electrical engineering, and computer science disciplines
within a robotic system, as well as provide interactive
engineering activities based upon the particle dynamics of
a ball in motion. To be precise, the students will compete
in teams to design a trajectory for the ball, program the
initial velocity of the trajectory into the robot, and then
the robot will throw the ball.

In order to simplify the trajectory calculations, the robot is
designed to release the ball at a predefined point,
indicated by the position of the robot in Figure 1. The
students will measure the distance from the target to that
point and calculate a feasible initial velocity. The main
objective of this research is thus to develop a robotic arm
capable of achieving a wide range of initial velocities
while releasing from that same initial point.

Key to achieving this goal is the kinematic structure of the
robot, appropriate selection of actuators and sensors,
motion planning techniques, and control algorithms. The
kinematic structure must provide sufficient Degrees of
Freedom (DOF) such that initial velocity and position
requirements can be achieved. Yet, excessive DOF will
result in an arm that is too heavy, too complex, and not
capable of achieving the desired range of velocities.

As Figure 1 indicates, a two-link arm is selected with
dimensions comparable to an adult human arm. Given
these dimensions, the actuators must be capable of

Figure 1. Ball throwing robot and kinematic diagram.

generating the necessary dynamic loads to accommodate
the requirements of the motion planner and control
algorithm for the desired pitch velocity.

Planning of the robot motion must consider the distinct
operating regimes of the system. The robot must first
pickup a ball, windup and throw the ball, and then
decelerate. A 3rd order cubic spline is thus used to
approximate the angle, velocity, and acceleration
components of the trajectory. Computational resources
are limited, and these trajectories are calculated offline
prior to throwing the ball. Limited computational
resources also hinder the control algorithm. Hence, two
techniques based upon applying a feed forward torque for
counteracting non-linearities are examined. The feed-
forward component uses offline calculations based on the
system model and planned motion to predict the necessary
joint torques. Feedback control techniques based upon
position and velocity error compensation, as well as these
supplemented with acceleration error compensation, are
then compared for minimizing the ball throwing error.

In Section 2, we first examine existing throwing robots
and compare our kinematic structure and control system
to those found in the literature. In Section 3, we present
the robot itself and describe its functionality. Section 4
focuses on the planning and control algorithms that we
examined, and Section 5 presents testing and performance
results. Conclusions are stated in Section 6.

2. Background
A survey of similar projects uncovers many common
threads, but different objectives. There are many robots
in the literature that throw objects using various throwing
movements. They span a broad range of type and
purpose. The simplest are single DOF throwing robots
built both commercially and for research purposes. The
next common category is the two-link category, which
includes traditional rigid planar pairs and flexible member
manipulators. Many robots have more DOF and have
been built to catch as well as throw balls and even juggle
multiple balls. The juggling robots encompass their own
group, varying broadly in approach and form. The ideas
encompassed in these differing projects do encounter
similar challenges in implementation.

Northrop [1] uses a one-link robot to feed parts in an
assembly line by throwing them and manipulating their
landing position and orientation. Once the part is
identified and the trajectory planned, then the motor must
execute the command precisely. Aboaf [2] explored the
advantage of task-level control when throwing balls with
a one-link robot. The system uses a vision system to
measure the ball’s actual landing position, which can then

be compared against the desired landing position. They
explored two methods of using this error to improve
performance. Their Fixed-Model method learns by
applying an inverse model to the result. Their Refined
Model procedure manipulates both the model and the
command signal to get the desired results. Kato [3]
explores the control of a two-link planar pair robot using
an adaptive non-linear controller that modifies the release
time. He shows improved results through release time
manipulation. Other common techniques include sliding
mode control [4] and feedback linearization [5]. Due to
cost and computational limitations, though, these types of
control strategies are not feasible. Primarily for this
reason, more cost effective feed-forward linearization
with feedback compensation is examined.

While the Ball-Throwing Robot shares objectives and
requirements with the preceding projects, one feature not
shared is that the Ball-Throwing Robot has a goal of
converging two positions and two velocities at one fixed
point in space and time. This is important for allowing
the students to always calculate their velocity trajectories
from a common release point. In contrast, the other
systems are flexible in their release and catching points,
and they typically have the benefit of more computational
power.

3. Mechanical Structure
Derivation of the robot design was driven by several
factors. As an interactive demonstration robot, it was
necessary that the robot be mobile, lightweight, and
capable of accurate and repeatable motion. Towards this
end, the design indicated in Figure 1 was created. The
robot is entirely self-contained, lightweight and portable,
fail-safe, and capable of throwing accurately. These
features are feasible because of the designs for the base,
arm linkage, and gripper.

Base
The base of the robot actually serves many purposes.
Probably most importantly, it is required to serve as a
stable platform to support the robot. Since dimensions of
the base are limited by the need to also be easily
transported, the robot’s center of gravity must be as low
as possible. Towards this end the majority of the robot’s
mass is designed into the base. Thus, the power supplies,
amplifiers, one joint motor, and all support electronics are
contained therein.

The joint motor housed in the base controls rotation of the
Link 1, described by the variable θ1, as indicated in Figure
1. Link 1 elevates the shoulder of the robot sufficiently to
prevent the gripper of the robot from colliding with the
base and also stores balls that will be thrown by the robot.

The transparent tube that stores balls and supports the
shoulder is actually offset from the center of rotation.
This allows the gripper to move in a plane containing the
axis of Link 1 rotation. The angle θ1 determines the angle
of this plane and the direction that the ball will be thrown.
DH parameters for Link 1 are shown in Table 1. Inertial
parameters are neglected since this link remains stationary
during the throwing motion.

Arm Linkage
Mounted at the end of Link 1 is a platform that supports
the arm. The arm consists of a two link serial chain with
a gripper mounted at the distal end. The parameters for
the linkage are shown in Table 1, where Link 2 is the
upper arm of the robot and Link 3 is the forearm. The
Shoulder Joint supports Link 2, and the Elbow Joint
supports Link 3. Link lengths have been selected to be
similar to that of an adult human arm while allowing
complete rotation of the links without collision or
interference. Link masses have been decreased
substantially via the gusseted link shapes, which reduce
the weight of the robot by both decreasing link volume
and motor size.

The motor driving Link 2 is mounted on the platform at
the end of Link 1 and is directly coupled to the shoulder
joint. The motor driving Link 3 is offset from the Elbow
joint and is coupled via a timing belt. The elbow motor is
mounted on Link 2 near the shoulder joint, but on the
opposite side of the link. This mounting location allows
Link 2 to rotate fully and decrease the inertia of the arm to
allow faster throwing velocities with smaller and lighter
motors. Link offsets a2 and a3 in Table 1 are designed to
allow the gripper to travel in a plane containing the Link 1
axis of rotation.

Gripper
The primary requirements for the gripper include
sufficient strength to hold the ball given dynamic forces,
fast opening dynamics to minimize residual effects on the
ball’s trajectory, and light weight to minimize forearm
inertia. A gripper design consisting of two opposing four-
bar linkages was selected for this purpose. Using the
slider-rocker linkage configuration, Figure 2, both jaws
can be actuated simultaneously by the pull cable
indicated. The cable allows the actuator to be mounted
off the arm to reduce inertia and improve dynamic
performance. A spring is then used to pre-load the
linkage and produce a gripping force. The
magnitude of the gripping force is a function of the
cable force and linkage position.

The gripper linkage is actuated by a pull-type
solenoid. Figure 3 indicates the solenoid pull force
as a function of displacement at its rated voltage of

120 VAC. As the figure illustrates, the solenoid produces
much larger forces when displacement is small and hence
the device is very well suited to accelerating the gripper
quickly.

Figure 2. Gripper system.

Figure 3. Solenoid force (solid) and spring
preload force (dashed) versus displacement.

Table 1. Robot D-H and inertial parameters.
Link
(i)

ia
meters

iD (il)
meters

iα
deg

iI
kg-m2

Mass,

im , kg
Cog, ir
meters

1 0.000 0.908 90° - - -
2 0.022 0.305 0° 0.0171 1.760 -0.0142
3 0.038 0.294 0° 0.0028 0.213 0.1098

In order to select the appropriate spring for the gripper, a
simple mass-spring model, Figure 4, is used to
approximate the gripper dynamics and the solenoid force
is modeled as a step input. The gripper mass is treated as
an effective mass, mg, connected directly in series with the
mass of the solenoid core, ms. The gripper pre-load
spring, k, is then connected between the masses and
ground. Assuming damping is negligible, gripper
response is predicted via the differential equation,

 () ()s gm m x kx f t+ + = (1)

where the natural frequency, ()/n s gk m mω = + ,

determines the system response. With the desired
outcome of releasing the ball in approximately 50 ms, the
spring constant was chosen to produce a natural frequency
near 10Hz. Given the masses mg and ms, a desired spring
constant was calculated to be less than 612 N/m. A spring
with a constant of 297 N/m was selected, which
ultimately produces an estimated 36 ms release time.

Preload of the spring is reduced by the ring shaped finger
design. This allows the ball to nest in the gripper finger
slightly and eliminates dependence on friction for
restraining the ball during the throw. Based on a dynamic
analysis of the ball nested in the finger, neglecting
friction, a gripper force of 24N is sufficient for a 47mm
diameter ball with mass of 0.057 kg.

When the gripper opens, the spring force increases
linearly. The linkage design is such that approximately
2.5cm of solenoid travel will correspond to each jaw
opening 45°. This is sufficient to allow the ball to release
from the gripper without alteration of the ball’s trajectory.
As Figure 3 indicates, the solenoid provides sufficient
force to open the gripper to this position.

4. Control
Trajectory Planning
The robot was designed not to impact itself in any joint
configuration, therefore all joint configurations are
attainable and end-effector positions are only critical for
the start, release and end points. Likewise, no
obstructions exist within the workspace and intermediary
positions are inconsequential. The only limiting factor
that must be considered is the wiring to Link 3’s actuator,
which prevents the robot from rotating the shoulder more

than 360° in either direction. Such a configuration allows
for the planning of joint trajectories independently, and
the calculation of inverse kinematics unnecessary.

Third order cubic splines describe the joint trajectories.
One set of splines interpolates between the start and
release states, and then another set of splines interpolates
between the release and the stop states. A brief constant
angular velocity trajectory is placed between the
acceleration and deceleration splines to reduce sensitivity
to release time. Splines can account for all combinations
of initial and final joint states, which allows a simple
program to perform the calculations off line. Such a
program is flexible enough to work with any feasible
input the students provide. Since cubic splines are used to
approximate position trajectories, the acceleration
trajectories appear as linear functions. These linear
trajectories are more easily tracked than the higher order
acceleration trajectories that end-effector path planning
would produce.

One disadvantage of the joint trajectory spline technique
is the fact that the velocity vector is continually rotating
throughout the entire throwing motion. The ball is
therefore always being accelerated and consistent
throwing is more challenging. This emphasizes the need
for the repeatable and accurate execution of the
trajectories and the ball release.

Feed-Forward Linearization
Due to cost considerations, a microprocessor with limited
capability is used to control the robot. In order to
compensate for limited computational capabilities, offline
feed-forward torque predictions are calculated and
streamed into the controller to linearize the manipulator
dynamics. Based on the Newton-Euler recursive method
[6] applied to the last two planar links, Links 2 and 3, the
model based linearizing torques are determined from the
system of dynamic equations,

 τ+ =M(θ)θ+ V(θ,θ) + G(θ) F(θ) (2)

where ()M θ is the inertia matrix, V(θ,θ) is the
centrifugal and Coriolis terms, and G(θ) represents the
gravity terms. These are determined by,

 11 12

21 22

M M
M M
 

=  
 

M(θ) (3)

 ()2 2 2
11 2 3 2 2 3 3 2 3 2 32 cosM I I m r m r l r l θ= + + + + + (4)

()12 3 3 3 3 2 3cosM I m r r l θ= + + (5)

21 3 3 3 3 2 3(cos)M I m r r l θ= + + (6)
 2

22 3 3 3M I m r= + (7)

Figure 4. Spring Mass Damper Model of Hand.

 ()2
3 3 2 3 2 3 3

2
3 3 2 3 2

sin 2

(sin)

m r l

m r l

θ θ θ θ

θ θ

 − +
=  
  

V(θ,θ) (8)

 ()3 3 2 3 2 2 3 2 2

3 3 2 3

sin() sin
sin()

m r g m r m l g
m r g

θ θ θ
θ θ

+ + + 
=  + 

G(θ) (9)

where these terms are based upon the parameters shown
in Table 1. Additionally coulomb friction estimates were
measured and are incorporated into the model as F(θ) .
Hence, the linearizing torques, are calculated by
evaluating Eq.(2) at the desired joint positions, velocities,
and accelerations, dθ , dθ , and dθ , respectively:

 2

3
,d d

linearizing
lin

linearizing

T
T

τ −

−
= =

 
= = 
  θ θ θ θ

τ (10)

Error Feedback Controllers
Given the linearizing torques, two different feedback
controllers were compared for minimizing error. Both
techniques are derived from model-based control [7],
Figure 5, where the model based torques are calculated
offline outside of the servo loop due to computational
limitations. In the tradition of model-based control,
however, feed-back gains are applied to both position and
velocity signals, and model based feedback terms are used
to compensate for the back-EMF of the motor. The
applied torque, τ, is then determined by,

 lin e= +τ τ τ (11)

where eτ is the error based torque calculated by the
feedback terms. The conventional Model-Based (MB)
torque is then determined by,

 =e v pτ K e + K e (12)

where error is defined as de = θ -θ . For small error it is
assumed that the system matrices are approximately equal
and the error equation becomes,

 -1 -1
v pe + M (θ)K e + M (θ)K e = 0 (13)

Evaluating the inertia matrix at a particular angle, *θ = θ ,
then diagonalizes the inertia matrix and allows the gain
matrices vK and pK to be easily selected to decouple
the error equations ,

 * ˆ
v vK = M(θ)K and * ˆ

p pK = M(θ)K (14)

where

 2 2

3 3

2 0ˆ
0 2
ξ ω

ξ ω
 

=  
 

vK and
2
2

2
3

0ˆ
0
ω

ω
 

=  
 

pK (15)

are the diagonal matrices whose parameters are the
natural frequencies and damping ratios of the decoupled
error equations at *θ = θ . Hence, the controller gains vK
and pK are also diagonal matrices that allow decoupled
servo calculations as shown in Figure 5 for reduced
computational load. The challenge is that the Eigenvalues
of the closed loop error equation (13) are still dependent
on θ and vary throughout the throwing motion.

Selection of decoupled damping ratios and natural
frequencies, Eq (15), was thus approached as an
optimization problem. The objective was then to vary
these parameters so as to place the resulting poles as far to
the left as possible, while not exceeding the
microcontroller capacity to implement the equivalent of a

Figure 5. Joint controller using a model-based (MB) technique [6], with the

optional acceleration error compensator (AFB) terms highlighted.

continuous state controller. It was thus required that the
resulting system bandwidth was substantially lower than
the sampling rate, 40 2BW sfω π≤ . Initial conditions for
the optimization were determined empirically, and varied
to help avoid local minimum. The resulting optimized
gains were thus determined to be,

1.21 0

0 0.37vK
 

=  
 

 and
9.07 0

0 9.49pK
 

=  
 

 (16)

The second technique applies supplemental Acceleration
Feed-Back (AFB) control, Figure 5. The resulting error
torque is determined by,

 = +e a v pτ K e K e + K e (17)

An unexpected advantage to this controller is very
specific to the context of this robot. When the stream of
feed-forward torque predictions terminates, the
manipulator should always be at its initial position. If it is
displaced while the power is off and the power is
reapplied, this linear controller slowly corrects itself
without violent jerks that the model-based controller
exhibits under similar circumstances. The acceleration
reference of zero in addition to the velocity reference of
zero further damps out the response commanded by the
position step input. This characteristic is ideal for use in
an interactive setting, where safety must be a top priority.

Implementation of the desired torques requires an
accurate model of the Matsushita GMX-7MC01 9B DC
motor used for the joints. These motors were modeled
with two states, ignoring inductance and filtering in the
amplifier, since these states are several orders of
magnitude faster than those we intended to control. The
torque estimates described earlier are then converted into
appropriate motor voltages based on the motor torque
constant, KT, armature resistance, R, gear ratio, n, and
motor speed. This is derived from the classical permanent
magnet DC motor equations where the armature current, i,
is calculated assuming that the armature inductance
effects have settled out. This gives the applied motor
voltage,

 inv B

T

R
T nK

K n
θ= + (18)

5. Testing and Performance
The capability of the robot to throw a 47 mm ball with a
mass of 0.057 kg was examined using both controllers.
Several initial velocity trajectories were examined to
evaluate the performance of the system while throwing
the ball increasing distances. At each trajectory, eight to
twelve trials were conducted to obtain an estimate of
consistency and error for the control techniques.

Typical joint position and velocity responses are indicated
in Figure 6 and Figure 7, respectively, while attempting to
throw a ball 5.7m. As the figures indicate, the AFB
controller exhibited better tracking and reduced velocity
error throughout the entire motion. The MB controller
exhibited noticeable damped oscillations in elbow joint
velocity, Figure 7, but these oscillations settled out prior
to releasing the ball.

The resulting throwing accuracy of the MB and AFB
control techniques are illustrated in, Figure 8 and Figure
9, respectively. Given a desired throwing distance, these
plots indicate the result produced by each controller.
Overall, the repeatability of the MB controller was better
than the AFB controller. As the 95% confidence intervals
indicate, the MB controller exhibited a maximum

Figure 6. Joint position during throwing motion

comparing Model Based (MB) and Acceleration Feed
Back (AF) controls.

Figure 7. Joint velocity during throwing motion.

confidence interval of ±0.36m, compared to the ±0.56m
interval of the AFB controller. Both data sets are
approximated well by linear regression, resulting in slope
variations of approximately 5% from ideal (y=x) for each
controller, but the MB controller exhibited slightly more
linear throwing accuracy, as R2 = 0.98 indicates. As the
regression fit (y=1.05x+.01) indicates, however, the
resulting throwing distance were larger than desired. In
contrast, the AFB throwing response was nominally
closer to the ideal, but the variations were much larger.
Thus, for purposes of consistency and reduced
computational load, the traditional Model Based
controller is preferred.

6. Conclusion
Design, implementation, and performance of a three link
serial manipulator have been presented. The purpose of
the system is to illustrate to potential engineers the typical
roles of mechanical engineers, electrical engineers, and
computer scientists in such a project. The system will
provide an interactive engineering activity, calculation of
and implementation of throwing trajectories, which will
allow the students to program the robot and compete for
accuracy. Two separate control strategies are examined
and compared for ball throwing accuracy and
repeatability. Moderately accurate results have been
obtained using a feed forward linearizing controller with
position, velocity, and acceleration feedback. Further
work will be completed to improve accuracy and
implement the control interface on a limited and cost
effective micro-controller.

Acknowledgement
This work was completed with the support of Robert
Roemer, department chair of Mechanical Engineering at
the University of Utah.

References
1. Northrop, M.J., “Parts Feeding with a Throwing

Robot,” Masters Thesis, Northwestern University,
Department of Mechanical Engineering, 1999.

2. Aboaf, E.W., C.G. Atkeson, and D.J. Reinkensmeyer,
“Task-Level Robot Learning,” 1988 IEEE
International Conference on Robotics and
Automation, 2, p1309-1310, 1988.

3. Kato, N., K. Matsuda, and T. Nakamura, “Adaptive
Control for a Throwing Motion of a 2 DOF Robot,”
1996 4th International Workshop on Advanced
Motion Control, 1, p203-207, 1996.

4. Park, C., Kim, J.; Kwon, C., Park, M., “Tracking
control of a robot manipulator using sliding mode
controller with fast and accurate performance,” 1999

IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS'99), Oct 17-Oct 21 1999,
Kyongju, South Korea, p305-310, 1999.

5. Yurkovich, S., Garcia-Benitez, E., and Watkins, J.,
“Feedback linearization with acceleration feedback
for a two-link flexible manipulator,” Proceedings of
the 1991 American Control Conference, Jun 26-28
1991, Boston, MA, p1360-1365, 1991.

6. Fu, K.S., Gonzalez, R.C., and Lee, C.S.G., Robotics
Control, Sensing, Vision, and Intelligence, McGraw-
Hill, p98-102, 1987.

7. Craig, J.J., Introduction to Robotics Mechanics and
Control, 2nd ed., Addison-Wesley Longman Inc,
p310-321, 1989.

Figure 8. MB control throwing accuracy.

Figure 9. AFB control throwing accuracy.

