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Abstract 

Design, control, and performance of a ball-throwing robot 
are examined in this paper.  The objective of this project 
is to provide an interactive ball-throwing robotic arm for 
illustrating the roles of engineers and computer scientists 
in the design and usage of such a system to high school or 
pre-engineering students.  Activities in particle dynamics 
and trajectory calculation will provide basic hands on 
engineering experience and the opportunity to interact 
with the robot.  In order to effectively provide this 
activity, the robot must consistently throw the ball from a 
known point with a desired velocity. This requires a 
minimum of a two-link manipulator with control 
strategies sufficient to converge two joint positions and 
velocities simultaneously. Due to limited micro-controller 
computational resources, feed-forward torques are 
calculated offline based on 3rd order cubic spline 
trajectories.  Feedback compensation for position and 
velocity error is then examined and compared for ball 
throwing accuracy and precision to a technique 
supplementing the previous controller with acceleration 
error compensation.  Experimental results are presented 
that illustrate the improved accuracy and reduced 
repeatability the later technique.  Gripper design 
providing consistent hold on the ball and rapid release is 
also examined. 

1. Introduction 
Robotics research is consistently gaining attention 
amongst students entering engineering curriculum.  To 
help pre-engineering and high school students gain a 
better understanding of engineering disciplines and make 
an educated decision about their career choice, the 
University of Utah is developing an interactive ball 
throwing robotic arm, Figure 1.  The robot is designed to 
illustrate the roles of the mechanical engineering, 
electrical engineering, and computer science disciplines 
within a robotic system, as well as provide interactive 
engineering activities based upon the particle dynamics of 
a ball in motion.  To be precise, the students will compete 
in teams to design a trajectory for the ball, program the 
initial velocity of the trajectory into the robot, and then 
the robot will throw the ball.   

In order to simplify the trajectory calculations, the robot is 
designed to release the ball at a predefined point, 
indicated by the position of the robot in Figure 1.  The 
students will measure the distance from the target to that 
point and calculate a feasible initial velocity.  The main 
objective of this research is thus to develop a robotic arm 
capable of achieving a wide range of initial velocities 
while releasing from that same initial point.   

Key to achieving this goal is the kinematic structure of the 
robot, appropriate selection of actuators and sensors, 
motion planning techniques, and control algorithms.  The 
kinematic structure must provide sufficient Degrees of 
Freedom (DOF) such that initial velocity and position 
requirements can be achieved.  Yet, excessive DOF will 
result in an arm that is too heavy, too complex, and not 
capable of achieving the desired range of velocities.   

As Figure 1 indicates, a two-link arm is selected with 
dimensions comparable to an adult human arm.  Given 
these dimensions, the actuators must be capable of 

 

Figure 1.  Ball throwing robot and kinematic diagram. 



generating the necessary dynamic loads to accommodate 
the requirements of the motion planner and control 
algorithm for the desired pitch velocity.   

Planning of the robot motion must consider the distinct 
operating regimes of the system.  The robot must first 
pickup a ball, windup and throw the ball, and then 
decelerate.  A 3rd order cubic spline is thus used to 
approximate the angle, velocity, and acceleration 
components of the trajectory.  Computational resources 
are limited, and these trajectories are calculated offline 
prior to throwing the ball.  Limited computational 
resources also hinder the control algorithm.  Hence, two 
techniques based upon applying a feed forward torque for 
counteracting non-linearities are examined.  The feed- 
forward component uses offline calculations based on the 
system model and planned motion to predict the necessary 
joint torques.  Feedback control techniques based upon 
position and velocity error compensation, as well as these 
supplemented with acceleration error compensation, are 
then compared for minimizing the ball throwing error.   

In Section 2, we first examine existing throwing robots 
and compare our kinematic structure and control system 
to those found in the literature.  In Section 3, we present 
the robot itself and describe its functionality.  Section 4 
focuses on the planning and control algorithms that we 
examined, and Section 5 presents testing and performance 
results.  Conclusions are stated in Section 6.   

2. Background 
A survey of similar projects uncovers many common 
threads, but different objectives.  There are many robots 
in the literature that throw objects using various throwing 
movements.  They span a broad range of type and 
purpose.  The simplest are single DOF throwing robots 
built both commercially and for research purposes.  The 
next common category is the two-link category, which 
includes traditional rigid planar pairs and flexible member 
manipulators.  Many robots have more DOF and have 
been built to catch as well as throw balls and even juggle 
multiple balls.  The juggling robots encompass their own 
group, varying broadly in approach and form.  The ideas 
encompassed in these differing projects do encounter 
similar challenges in implementation. 

Northrop [1] uses a one-link robot to feed parts in an 
assembly line by throwing them and manipulating their 
landing position and orientation.  Once the part is 
identified and the trajectory planned, then the motor must 
execute the command precisely.  Aboaf [2] explored the 
advantage of task-level control when throwing balls with 
a one-link robot.  The system uses a vision system to 
measure the ball’s actual landing position, which can then 

be compared against the desired landing position.  They 
explored two methods of using this error to improve 
performance.  Their Fixed-Model method learns by 
applying an inverse model to the result.  Their Refined 
Model procedure manipulates both the model and the 
command signal to get the desired results.  Kato [3] 
explores the control of a two-link planar pair robot using 
an adaptive non-linear controller that modifies the release 
time.  He shows improved results through release time 
manipulation.  Other common techniques include sliding 
mode control [4] and feedback linearization [5].  Due to 
cost and computational limitations, though, these types of 
control strategies are not feasible.   Primarily for this 
reason, more cost effective feed-forward linearization 
with feedback compensation is examined. 

While the Ball-Throwing Robot shares objectives and 
requirements with the preceding projects, one feature not 
shared is that the Ball-Throwing Robot has a goal of 
converging two positions and two velocities at one fixed 
point in space and time.  This is important for allowing 
the students to always calculate their velocity trajectories 
from a common release point.  In contrast, the other 
systems are flexible in their release and catching points, 
and they typically have the benefit of more computational 
power.   

3. Mechanical Structure 
Derivation of the robot design was driven by several 
factors.  As an interactive demonstration robot, it was 
necessary that the robot be mobile, lightweight, and 
capable of accurate and repeatable motion.  Towards this 
end, the design indicated in Figure 1 was created.  The 
robot is entirely self-contained, lightweight and portable, 
fail-safe, and capable of throwing accurately.  These 
features are feasible because of the designs for the base, 
arm linkage, and gripper. 

Base 
The base of the robot actually serves many purposes. 
Probably most importantly, it is required to serve as a 
stable platform to support the robot.  Since dimensions of 
the base are limited by the need to also be easily 
transported, the robot’s center of gravity must be as low 
as possible.  Towards this end the majority of the robot’s 
mass is designed into the base.  Thus, the power supplies, 
amplifiers, one joint motor, and all support electronics are 
contained therein.   

The joint motor housed in the base controls rotation of the 
Link 1, described by the variable θ1, as indicated in Figure 
1.  Link 1 elevates the shoulder of the robot sufficiently to 
prevent the gripper of the robot from colliding with the 
base and also stores balls that will be thrown by the robot. 



The transparent tube that stores balls and supports the 
shoulder is actually offset from the center of rotation.  
This allows the gripper to move in a plane containing the 
axis of Link 1 rotation.  The angle θ1 determines the angle 
of this plane and the direction that the ball will be thrown.  
DH parameters for Link 1 are shown in Table 1.  Inertial 
parameters are neglected since this link remains stationary 
during the throwing motion.  

Arm Linkage 
Mounted at the end of Link 1 is a platform that supports 
the arm.  The arm consists of a two link serial chain with 
a gripper mounted at the distal end.  The parameters for 
the linkage are shown in Table 1, where Link 2 is the 
upper arm of the robot and Link 3 is the forearm.  The 
Shoulder Joint supports Link 2, and the Elbow Joint 
supports Link 3.  Link lengths have been selected to be 
similar to that of an adult human arm while allowing 
complete rotation of the links without collision or 
interference.  Link masses have been decreased 
substantially via the gusseted link shapes, which reduce 
the weight of the robot by both decreasing link volume 
and motor size.   

The motor driving Link 2 is mounted on the platform at 
the end of Link 1 and is directly coupled to the shoulder 
joint.  The motor driving Link 3 is offset from the Elbow 
joint and is coupled via a timing belt.  The elbow motor is 
mounted on Link 2 near the shoulder joint, but on the 
opposite side of the link.  This mounting location allows 
Link 2 to rotate fully and decrease the inertia of the arm to 
allow faster throwing velocities with smaller and lighter 
motors.  Link offsets a2 and a3 in Table 1 are designed to 
allow the gripper to travel in a plane containing the Link 1 
axis of rotation.   

Gripper 
The primary requirements for the gripper include 
sufficient strength to hold the ball given dynamic forces, 
fast opening dynamics to minimize residual effects on the 
ball’s trajectory, and light weight to minimize forearm 
inertia.  A gripper design consisting of two opposing four-
bar linkages was selected for this purpose.  Using the 
slider-rocker linkage configuration, Figure 2, both jaws 
can be actuated simultaneously by the pull cable 
indicated.  The cable allows the actuator to be mounted 
off the arm to reduce inertia and improve dynamic 
performance.  A spring is then used to pre-load the 
linkage and produce a gripping force.  The 
magnitude of the gripping force is a function of the 
cable force and linkage position.   

The gripper linkage is actuated by a pull-type 
solenoid.  Figure 3 indicates the solenoid pull force 
as a function of displacement at its rated voltage of 

120 VAC.  As the figure illustrates, the solenoid produces 
much larger forces when displacement is small and hence 
the device is very well suited to accelerating the gripper 
quickly.   

 
Figure 2.  Gripper system. 

 
Figure 3.  Solenoid force (solid) and spring 
preload force (dashed) versus displacement. 

Table 1.  Robot D-H and inertial parameters. 
Link
(i) 

ia  
meters 

iD ( il ) 
meters 

iα  
deg 

iI  
kg-m2 

Mass, 

im , kg 
Cog, ir  
meters 

1 0.000 0.908 90° - - - 
2 0.022 0.305 0° 0.0171 1.760 -0.0142 
3 0.038 0.294 0° 0.0028 0.213 0.1098



In order to select the appropriate spring for the gripper, a 
simple mass-spring model, Figure 4, is used to 
approximate the gripper dynamics and the solenoid force 
is modeled as a step input.  The gripper mass is treated as 
an effective mass, mg, connected directly in series with the 
mass of the solenoid core, ms. The gripper pre-load 
spring, k, is then connected between the masses and 
ground.  Assuming damping is negligible, gripper 
response is predicted via the differential equation,  

 ( ) ( )s gm m x kx f t+ + =  (1) 

where the natural frequency, ( )/n s gk m mω = + , 

determines the system response.  With the desired 
outcome of releasing the ball in approximately 50 ms, the 
spring constant was chosen to produce a natural frequency 
near 10Hz.  Given the masses mg and ms, a desired spring 
constant was calculated to be less than 612 N/m.  A spring 
with a constant of 297 N/m was selected, which 
ultimately produces an estimated 36 ms release time. 

Preload of the spring is reduced by the ring shaped finger 
design.  This allows the ball to nest in the gripper finger 
slightly and eliminates dependence on friction for 
restraining the ball during the throw.  Based on a dynamic 
analysis of the ball nested in the finger, neglecting 
friction, a gripper force of 24N is sufficient for a 47mm 
diameter ball with mass of 0.057 kg.   

When the gripper opens, the spring force increases 
linearly.  The linkage design is such that approximately 
2.5cm of solenoid travel will correspond to each jaw 
opening 45°.  This is sufficient to allow the ball to release 
from the gripper without alteration of the ball’s trajectory.  
As Figure 3 indicates, the solenoid provides sufficient 
force to open the gripper to this position.  

4. Control 
Trajectory Planning  
The robot was designed not to impact itself in any joint 
configuration, therefore all joint configurations are 
attainable and end-effector positions are only critical for 
the start, release and end points.  Likewise, no 
obstructions exist within the workspace and intermediary 
positions are inconsequential.  The only limiting factor 
that must be considered is the wiring to Link 3’s actuator, 
which prevents the robot from rotating the shoulder more 

than 360° in either direction.  Such a configuration allows 
for the planning of joint trajectories independently, and 
the calculation of inverse kinematics unnecessary.   

Third order cubic splines describe the joint trajectories.  
One set of splines interpolates between the start and 
release states, and then another set of splines interpolates 
between the release and the stop states.  A brief constant 
angular velocity trajectory is placed between the 
acceleration and deceleration splines to reduce sensitivity 
to release time.  Splines can account for all combinations 
of initial and final joint states, which allows a simple 
program to perform the calculations off line.  Such a 
program is flexible enough to work with any feasible 
input the students provide.  Since cubic splines are used to 
approximate position trajectories, the acceleration 
trajectories appear as linear functions.  These linear 
trajectories are more easily tracked than the higher order 
acceleration trajectories that end-effector path planning 
would produce.   

One disadvantage of the joint trajectory spline technique 
is the fact that the velocity vector is continually rotating 
throughout the entire throwing motion.  The ball is 
therefore always being accelerated and consistent 
throwing is more challenging. This emphasizes the need 
for the repeatable and accurate execution of the 
trajectories and the ball release.   

Feed-Forward Linearization 
Due to cost considerations, a microprocessor with limited 
capability is used to control the robot.  In order to 
compensate for limited computational capabilities, offline 
feed-forward torque predictions are calculated and 
streamed into the controller to linearize the manipulator 
dynamics.  Based on the Newton-Euler recursive method 
[6] applied to the last two planar links, Links 2 and 3, the 
model based linearizing torques are determined from the 
system of dynamic equations, 

 τ+ =M(θ)θ+ V(θ,θ) + G(θ) F(θ)  (2) 

where ( )M θ  is the inertia matrix, V(θ,θ)  is the 
centrifugal and Coriolis terms, and G(θ)  represents the 
gravity terms. These are determined by,  

 11 12

21 22

M M
M M
 

=  
 

M(θ)   (3) 

 ( )2 2 2
11 2 3 2 2 3 3 2 3 2 32 cosM I I m r m r l r l θ= + + + + +  (4) 

( )12 3 3 3 3 2 3cosM I m r r l θ= + +  (5)

21 3 3 3 3 2 3( cos )M I m r r l θ= + +  (6) 
 2

22 3 3 3M I m r= +  (7) 

 
Figure 4.  Spring Mass Damper Model of Hand. 



 ( )2
3 3 2 3 2 3 3

2
3 3 2 3 2

sin 2

( sin )

m r l

m r l

θ θ θ θ

θ θ

 − +
=  
  

V(θ,θ)  (8) 

 ( )3 3 2 3 2 2 3 2 2

3 3 2 3

sin( ) sin
sin( )

m r g m r m l g
m r g

θ θ θ
θ θ

+ + + 
=  + 

G(θ)  (9) 

where these terms are based upon the parameters shown 
in Table 1.  Additionally coulomb friction estimates were 
measured and are incorporated into the model as F(θ) .  
Hence, the linearizing torques, are calculated by 
evaluating Eq.(2) at the desired joint positions, velocities, 
and accelerations, dθ , dθ , and dθ , respectively: 

 2

3
,d d

linearizing
lin

linearizing

T
T

τ −

−
= =

 
= = 
  θ θ θ θ

τ  (10) 

 
Error Feedback Controllers 
Given the linearizing torques, two different feedback 
controllers were compared for minimizing error.  Both 
techniques are derived from model-based control [7], 
Figure 5, where the model based torques are calculated 
offline outside of the servo loop due to computational 
limitations.  In the tradition of model-based control, 
however, feed-back gains are applied to both position and 
velocity signals, and model based feedback terms are used 
to compensate for the back-EMF of the motor.  The 
applied torque, τ, is then determined by,  

 lin e= +τ τ τ  (11) 

where eτ  is the error based torque calculated by the 
feedback terms.  The conventional Model-Based (MB) 
torque is then determined by, 

 =e v pτ K e + K e  (12) 

where error is defined as de = θ -θ .  For small error it is 
assumed that the system matrices are approximately equal 
and the error equation becomes, 

 -1 -1
v pe + M (θ)K e + M (θ)K e = 0  (13) 

Evaluating the inertia matrix at a particular angle, *θ = θ ,  
then diagonalizes the inertia matrix and allows the gain 
matrices vK  and pK  to be easily selected to decouple 
the error equations ,  

 * ˆ
v vK = M(θ )K  and * ˆ

p pK = M(θ )K  (14) 

where  

 2 2

3 3

2 0ˆ
0 2
ξ ω

ξ ω
 

=  
 

vK  and 
2
2

2
3

0ˆ
0
ω

ω
 

=  
 

pK   (15) 

are the diagonal matrices whose parameters are the 
natural frequencies and damping ratios of the decoupled 
error equations at *θ = θ .  Hence, the controller gains vK  
and pK  are also diagonal matrices that allow decoupled 
servo calculations as shown in Figure 5 for reduced 
computational load.  The challenge is that the Eigenvalues 
of the closed loop error equation (13) are still dependent 
on θ  and vary throughout the throwing motion.   

Selection of decoupled damping ratios and natural 
frequencies, Eq (15), was thus approached as an 
optimization problem.  The objective was then to vary 
these parameters so as to place the resulting poles as far to 
the left as possible, while not exceeding the 
microcontroller capacity to implement the equivalent of a 

 
Figure 5.  Joint controller using a model-based (MB) technique [6], with the  

optional acceleration error compensator (AFB) terms highlighted. 



continuous state controller.  It was thus required that the 
resulting system bandwidth was substantially lower than 
the sampling rate, 40 2BW sfω π≤ .  Initial conditions for 
the optimization were determined empirically, and varied 
to help avoid local minimum.  The resulting optimized 
gains were thus determined to be, 

 
1.21 0

0 0.37vK
 

=  
 

 and 
9.07 0

0 9.49pK
 

=  
 

 (16) 

The second technique applies supplemental Acceleration 
Feed-Back (AFB) control, Figure 5.  The resulting error 
torque is determined by, 

 = +e a v pτ K e K e + K e  (17) 

An unexpected advantage to this controller is very 
specific to the context of this robot.  When the stream of 
feed-forward torque predictions terminates, the 
manipulator should always be at its initial position.  If it is 
displaced while the power is off and the power is 
reapplied, this linear controller slowly corrects itself 
without violent jerks that the model-based controller 
exhibits under similar circumstances.  The acceleration 
reference of zero in addition to the velocity reference of 
zero further damps out the response commanded by the 
position step input.  This characteristic is ideal for use in 
an interactive setting, where safety must be a top priority. 

Implementation of the desired torques requires an 
accurate model of the Matsushita GMX-7MC01 9B DC 
motor used for the joints.  These motors were modeled 
with two states, ignoring inductance and filtering in the 
amplifier, since these states are several orders of 
magnitude faster than those we intended to control.  The 
torque estimates described earlier are then converted into 
appropriate motor voltages based on the motor torque 
constant, KT, armature resistance, R, gear ratio, n, and 
motor speed.  This is derived from the classical permanent 
magnet DC motor equations where the armature current, i, 
is calculated assuming that the armature inductance 
effects have settled out.  This gives the applied motor 
voltage, 

 inv B

T

R
T nK

K n
θ= +  (18) 

5. Testing and Performance 
The capability of the robot to throw a 47 mm ball with a 
mass of 0.057 kg was examined using both controllers.  
Several initial velocity trajectories were examined to 
evaluate the performance of the system while throwing 
the ball increasing distances.  At each trajectory, eight to 
twelve trials were conducted to obtain an estimate of 
consistency and error for the control techniques.  

Typical joint position and velocity responses are indicated 
in Figure 6 and Figure 7, respectively, while attempting to 
throw a ball 5.7m.  As the figures indicate, the AFB 
controller exhibited better tracking and reduced velocity 
error throughout the entire motion.  The MB controller 
exhibited noticeable damped oscillations in elbow joint 
velocity, Figure 7, but these oscillations settled out prior 
to releasing the ball.   

The resulting throwing accuracy of the MB and AFB 
control techniques are illustrated in, Figure 8 and Figure 
9, respectively.  Given a desired throwing distance, these 
plots indicate the result produced by each controller.   
Overall, the repeatability of the MB controller was better 
than the AFB controller.  As the 95% confidence intervals 
indicate, the MB controller exhibited a maximum 

 
Figure 6.  Joint position during throwing motion 

comparing Model Based (MB) and Acceleration Feed 
Back (AF) controls. 

 
Figure 7.  Joint velocity during throwing motion. 



confidence interval of ±0.36m, compared to the ±0.56m 
interval of the AFB controller.  Both data sets are 
approximated well by linear regression, resulting in slope 
variations of approximately 5% from ideal (y=x) for each 
controller, but the MB controller exhibited slightly more 
linear throwing accuracy, as R2 = 0.98 indicates.  As the 
regression fit (y=1.05x+.01) indicates, however, the 
resulting throwing distance were larger than desired.  In 
contrast, the AFB throwing response was nominally 
closer to the ideal, but the variations were much larger.  
Thus, for purposes of consistency and reduced 
computational load, the traditional Model Based 
controller is preferred.    

6. Conclusion 
Design, implementation, and performance of a three link 
serial manipulator have been presented.  The purpose of 
the system is to illustrate to potential engineers the typical 
roles of mechanical engineers, electrical engineers, and 
computer scientists in such a project.  The system will 
provide an interactive engineering activity, calculation of 
and implementation of throwing trajectories, which will 
allow the students to program the robot and compete for 
accuracy.   Two separate control strategies are examined 
and compared for ball throwing accuracy and 
repeatability.  Moderately accurate results have been 
obtained using a feed forward linearizing controller with 
position, velocity, and acceleration feedback.  Further 
work will be completed to improve accuracy and 
implement the control interface on a limited and cost 
effective micro-controller. 
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