Advanced Finite Elements

ME EN 7540
Hyperelastic Circular Plate
Spring 2006

This handout shows an example of hyperelastic problem using Neo-Hookean Hyperelastic material constants. The strain energy potential is given by

$$
W=\frac{\mu}{2}\left(\overline{I_{1}}-3\right)+\frac{1}{d}(J-1)^{2}
$$

where μ is the initial shear modulus, d is material incompressibility,
\bar{I}_{1} is the first deviatoric strain invariant,
J is the determinant of the elastic deformation gradient.
The Neo-Hookean option (TB,HYPER,,,,NEO) represents the simplest form of strain energy potential, and has an applicable strain range of $20-30 \%$. An example input listing showing a typical use of the Neo-Hookean option is presented below.

TB,HYPER,1,„NEO !Activate Neo-Hookean data table
TBDATA, $1,0.577148 \quad$!Define μ shear modulus
TBDATA,2,7.0e-5 !Define incompressibility parameter
!(as $2 / K, K$ is the bulk modulus)
Example: Hyperelastic Circular Plate
A flat circular membrane made of a rubber material is subjected to uniform water pressure. The edges of the membrane are fixed. Determine the response as pressure is increased to 50 psi .

Figure 1. Hyperelastic Circular Plate Project Sketch

Table 1 Material, geometric and loading properties

Material Properties	Geometric Properties	Loading
$m=200 \mathrm{psi}$	$R=7.5 \mathrm{in}$	Pres $=25 \mathrm{psi}$
	$T=0.5 \mathrm{in}$	

The full circular plate is reduced to a 7.5 degree sector for analysis. The mid-plane of the outer edge of the circle is considered to be fixed. A pressure of 25 psi is applied to the bottom surface of the shell sector. SHELL181, a finite strain layered shell, is used in this simulation. Consult ANSYS Element Manual for detailed description of this element.

Table 2 Results comparison

	Target	ANSYS	Ratio
U_{z} at 4 psi	2.25	2.275	0.989
U_{z} at 9.8 psi	3.2	3.379	0.947
U_{z} at 15.3 psi	4.1	4.357	0.941
U_{z} at 18.8 psi	4.9	5.095	0.962
U_{z} at 24 psi	6.2	6.989	0.887

Input Listing
/PREP7
ET, 1,SHELL181

```
LOCAL, 11, 0, 0.0,0.0,0.0, 7.5,0.0,0.0
NROTAT,102,111,1
AUTOTS,ON
NSUBST, 400, 1200,25
NLGEOM,ON
NROPT,FULL, OFF
OUTRES, ALL, ALL,
SF,ALL,PRES,25
NEQITR,20
/AUTO,1
/VIEW,1,,1
/ANG,1
/ESHAPE,1
EPLOT
FINISH
/SOLUTION
SOLVE
FINISH
/POST1
NOPR !SUPPRESS GRAPHING DATA
/VIEW,1,,-1
/ANG,1
/USER
/FOCUS,1,4,8,0 !SET UP CENTER OF GRAPHICS SCREEN FOR DISPLACEMENT PLOT
/DIST,12
/TRIAD,OFF
SET,FIRST !SET DISPLACEMENT DATA FOR FIRST SUBSTEP
PLDISP,0
!PLOT DISPLACEMENT DATA
/NOERASE
!SET DISPLAY TO OVERLAY PLOTS
SET,,10
PLDISP,0
SET,20
PLDISP,0
SET,,25
PLDISP,0
SET,LAST
PLDISP,1 !PLOT FINAL DISPLACEMENT WITH ORIGINAL POSITION
/ERASE
/TRIAD,ON
/GOPR
/ESHAPE,0
FINISH
/POST26
/XRANGE,0,3.0
/YRANGE,0,1
/AXLAB,X,UZ OF CENTER/R-INITIAL
/AXLAB,Y,THICKNESS/ORIGINAL THICKNESS
NSOL,2,1,U,Z,UZ_1
ESOL,3,1, ,SMIS,17,TH_1
ADD,4,2, ,,UZRATIO, ,0.13333333,0,0,
ADD,5,3, , SH.181, , ,2,0,0,
/COLOR,CURVE,MRED
XVAR,4
PLVAR,5
/XRANGE,0,10
/YRANGE,0,60
/AXLAB,X,UZ OF CENTER (IN)
/AXLAB,Y,PRESSURE (LB/SQ IN)
/COLOR,CURVE,YGRE
NSOL,2,1,U,Z,UZ 1
PROD,7,1,,,SH.181,,,,25,0,0, !MULTIPLY SOLUTION BY 25
/COLOR,CURVE,MRED
XVAR,2 !SPECIFY X VARIABLE TO BE DISPLAYED
PLVAR,7 !DISPLAY SOLUTION IN GRPH FILE
PRVAR,7,2 !LIST VARIABLE 7 VERSUS VARIABLE }
FINISH
```

