Solve the following heat transfer problem (steady-state conduction). Use Link32 (2-D Conduction Bar) elements for the structure.

Step1: Set Preferences To Include Thermal Analysis

Preferences \rightarrow (window) select structural and thermal buttons $\rightarrow OK$.

Step 2: Define Nodal Locations

Preprocessor \rightarrow *Modeling* \rightarrow *Create* \rightarrow *Nodes* \rightarrow *In Active CS* \rightarrow (window) define node 1 with label and XYZ coordinates, hit Apply and repeat for nodes 2-4 \rightarrow when finished, select *OK* to exit window.

Step 3: Select Element Type

Preprocessor \rightarrow *Element Type* \rightarrow *Add/Edit/Delete* \rightarrow (window) *Add...* \rightarrow (window) highlight *Themal Mass-Link* and 2D Conduction 32, \rightarrow OK \rightarrow CLOSE.

Step 4: Define Material Properties

Preprocessor→*Material Properties*→*Material Models*→(window) double click *Thermal/Conductivity/Isotropic*→(window) input value for thermal conductivity of material $1 \rightarrow OK$ →repeat for materials 2 and 3.

Step 5: Define Real Constant

Preprocessor→*RealConstants*→*Add/Edit/Delete*→(window) *Add...*→(window with element type 1 {Link 32} highlighted) *OK*→(window) input Cross-sectional area of $1^* \rightarrow OK \rightarrow CLOSE$.

*Note: since the material is approximated as infinite in the y-direction, we really have 1-d steady state conduction, which is the same for any arbitrary constant cross section==>use $1m^2$ area for all elements.

Step 6: Build Elements Between the Nodes

Preprocessor→*Modeling*→*Create*→*Elements*→*User Numbered*→*Thru Nodes*→(window) assign element as No. 1, select OK→(selection window) pick nodes 1 and 2→OK (creates element 1). Now change the default material to mat2 and create element 2; then change to mat3 and create element 3. (Remember you can change material type using Preprocessor→*Modeling*→*Create*→*Elements*→ *Element Attributes*).

Step 7: Apply Boundary Conditions (Temperature Loads)

Preprocessor→*Loads*→*Define Loads*→*Apply*→*Thermal*→*Temperature*→*On Nodes*→(window) pick node 1 then select OK→(window) highlight *TEMP* only; make sure it shows *Apply As: Constant Value*; enter value as 500, select OK. Repeat for applying temperature at node 4.

Step 8: Solve

Solution \rightarrow Solve \rightarrow Current LS \rightarrow (asks you to review summary info) select $OK \rightarrow$ ANSYS will begin solving the problem and will post a message "Solution is done!" when it has finished. Close message windows and go to next step.

Step 9: View Results

Temperatures are analogous to displacements in a structural analysis—they are the dof allowed at the nodes. Therefore, we can list the nodal temperatures similar to how we listed nodal displacements: <u>List Nodal Temperature</u>: General Postproc \rightarrow List Results \rightarrow Nodal Solution \rightarrow (window) highlight DOF solution and Temperature; select OK. You should get the following:

NODE	TEMP (°C)
1	500.00
2	420.27
3	121.26
4	100.00

Heat flux is analogous to stress in a structural analysis. Recall for these 1-d type elements, we need to use the element table to access element output:

<u>List Heat Flux</u>: This needs to be done using the command input window. Type the following in the window:

etable,flux,s	smisc,4 (enter)	
pretab,flux	(enter)	
You should get the following:		
Element	$flux (W/m^2)$	
1	3986.7	
2	3986.7	
3	3986.7	

Note that these could have been calculated easily from the nodal temperatures using the 1-d form of Fourier's Heat Conduction Law:

$$q_x = -K_{xx} \frac{dT}{dx}$$
 which is approximated as: $q_x = -K_{xx} \frac{\Delta T}{\Delta x}$

So, for example, the heat flux in element 2 could be calculated using know distances and temperatures as:

$$q_2 = -(0.8\frac{W}{m}^{\circ}C)\frac{(121.26 - 420.27)^{\circ}C}{(0.060m)} = 3986.8\frac{W}{m^2}$$

/com, Structural	!set preference to include structural and thermal analysis
/com, Thermal	
/prep7	
n,1,0,0,0	!node 1
n,2,0.1,0,0	Inode 2
n,3,0.16,0,0	Inde 3
n,4,0.24,0,0	!node 4
et,1,32	!element type = $link32$ (2D conduction)
mp,kxx,1,5	conductivity of material 1
mp,kxx,2,0.8	conductivity of material 2
mp,kxx,3,15	conductivity of material 3
R,1,1	!cross-sectional area = 1
mat,1	!use material 1
e.1.2	create element between node 1 and 2
mat,2	luse material 2
e.2.3	create element between node 2 and 3
mat.3	!use material 3
e.3.4	create element between node 3 and 4
d.1.temp.500	apply temperature of 500C to node 1
d.4.temp.100	apply temperature of 100C to node 4
fini	
/solu	
solve	
fini	
/post1	
etable,flux,smisc,4	create result table containing heat flux
/output,heat,out	switch output to file heat.out
prnsol	!list nodal solution
pretab,flux	list result of heat flux
/output.	switch output back to screen
fini	1
Results from heat.out:	

PRINT DOF NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

NODE TEMP 1 500.00 2 420.27 3 121.26

4 100.00

MAXIMUM ABSOLUTE VALUES NODE 1 VALUE 500.00

PRINT ELEMENT TABLE ITEMS PER ELEMENT

***** POST1 ELEMENT TABLE LISTING *****

STAT CURRENT ELEM FLUX 1 3986.7 2 3986.7 3 3986.7 MINIMUM VALUES

ELEM 3 VALUE 3986.7

MAXIMUM VALUES ELEM 1 VALUE 3986.7