• General components of SPM;
• Tip --- the probe;
• Cantilever --- the indicator of the tip;
• Tip-sample interaction --- the feedback system;
• Scanner --- piezoelectric movement at x,y,z;
• Measurement artifacts: vibration must be isolated.
Basic components of SPM: tip, cantilever, sensor for tip positioning, scanner, feedback loop (electronic control)
Generation of SPM image

X-Y raster scanning;
Z-modulation (height) by feedback system.

Obtaining Surface Profiles
SPM Family

STM

Tip-Sample Electrical Current

STM

AFM

Tip-Sample Interaction

AFM + Optical Microscopy

NSOM

Scanning Confocal

Tip-Sample Interaction

Mechanic Force:
• Contact mode
• Non-contact mode
• Tapping (intermittent) mode

Other Interactions:
• Electrostatic mode (scanning electrostatic potential microscope)
• Magnetic mode
• Chemical Force mode

Extremely high Resolution at UHV.
Basic components of STM:

- Five basic components:
 1. Metal tip,
 2. Piezoelectric scanner,
 3. Current amplifier (nA),
 4. Bipotentiostat (bias),
 5. Feedback loop (current).

- Tunneling current from tip to sample or vice-versa depending on bias;
- Current is exponentially dependent on distance;
- Raster scanning gives 2D image;
- Feedback is normally based on constant current, thus measuring the height on surface.
Atomic Force Microscopy (AFM): General Components and Their Functions

- **Laser Diode**
 - spring which deflects as probe tip
 - scans sample surface

- **Mirror**

- **Cantilever**
 - spring which deflects as probe tip
 - scans sample surface

- **Position Sensitive Photodetector**
 - measures deflection of cantilever

- **Probe Tip**
 - senses surface properties and causes cantilever to deflect

- **Sample**

- **Computer**
 - controls system
 - performs data acquisition, display, and analysis

- **Piezoelectric Scanner**
 - positions sample (x, y, z) with Å accuracy

- **Sensor Output, δc, Fc**

- **Error**
 - actual signal - set point

- **Feedback Loop**
 - controls z-sample position

- **Image**
 - 100,000 μm

- **Image**
 - 1 μm

- **Image**
 - 1 μm
NSOM can be modified to be a SCM simply by removing the tuning fork head, the tip.
SCM uses the excitation beam through the same objective.
Both the excitation and emission shares the same focus on the sample surface.
Confocal requires high level alignment of optical accessories.
Principle of Scanning Confocal Microscope

Co-focus

NSOM or AFM Tip
100x 1.4 NA Objective

Dichroic Beamsplitter

Lens f=160

100 µm Pinhole

Flipper Mirror

Video Camera

Lens f=65

Flipper Mirror

Avalanche Photodiodes

Polarizing or Dichroic Beamsplitter

Optical Fiber

Adjustable Mirror

CCD Spectrometer

Aurora 3
Comparison of STM, AFM, NSOM
Comparison of Tips of STM, AFM, NSOM

- STM tip should be conducting, can be simply cut freshly by normal wire cutter.
- STM plays with the very top atom at the freshly cut tip, leading to atomic resolution.
- AFM tip should be sharp enough to get good resolution (fat-tip effect); recently atomically sharp tip obtained by binding a small molecule atop the tip.
- AFM tip should be stiff enough to sense the atomic interaction with sample surface (the distance).
- AFM tip is not necessary to be conducting.
- NSOM tip should be sharp enough to get good topography resolution.
- The aperture of NSOM tip should be small for better optical resolution.
- The outer surface of NSOM tip should be flat to avoid artificial effects from the scanning.
The first member of SPM family, scanning tunneling microscopy (STM), was developed in 1980s.

The Nobel Prize in Physics 2000

Heinrich Rohrer and Gerd Binnig
Brief History of Scanning Probe Microscopy (SPM): STM
Brief History of Scanning Probe Microscopy (SPM): AFM
Cantilever: indicating the tip motion and rotation

Laser sensing to monitor the position of cantilever:

1. **Contact mode scanning:** cantilever is usually not vibrating, but deflected due to friction or other forces. Such a deflection can be detected precisely by the sensitive photodiode.

2. **Non-contact mode scanning:** cantilever is in vibration with constant frequency (> 100 kHz). Such vibration can be monitored precisely by the laser sensing. To keep the resonance frequency (the constant height over the sample) during scanning, the Z-scanner has to adjust the height of the cantilever. Such adjustment can be recorded by the computer to create the scanning profile, the image.
Laser sensing both tilting and twisting of cantilever

a) Normal force
 - UP: A + B = UP
 - Down: C + D = DOWN

b) Lateral Force
 - Left: A + C = LEFT
 - Right: B + D = Right
How to create vibration of cantilever?

There are two ways to drive the cantilever into oscillation.

- One way is accomplished by indirect vibration, in which the cantilever is excited by high frequency **acoustic** vibration from a piezoelectric transducer attached to the cantilever holder. This is called the Acoustic AC mode (AAC).

- Another, more favored method that is much cleaner and gentler than Acoustic AC mode is a direct vibration method where the cantilever is excited directly without having to vibrate the cantilever housing or other parts. This is called Magnetic AC mode (MAC Mode™). To achieve MAC Mode imaging, a cantilever coated with a magnetic material is driven into oscillation by an **AC magnetic field** generated by a solenoid positioned close to the cantilever housing. The result of MAC Mode™ is a gentle, clean cantilever response that has no spurious background signals (“forest of peaks”) like other AC modes can have. MAC Mode has even greater advantages when the cantilever is vibrated in liquid.
Piezoelectric material: changes its shape when an electric potential is applied.

The normal force is kept constant using the feedback.

Advantages:
- Negligible force on cantilever
- Not very sensitive to cantilever surface

Disadvantages: Sample illumination

The Feedback in SPM with laser detection
Resonance vibration of cantilever --- spring model

The Microcantilever and Hook’s Law

\[F = -kz, \quad k = \frac{E \cdot W \cdot (T/L)^3}{4} \]

Resonance frequency of the cantilever,

\[f_0 = \frac{1}{2\pi} \left(\frac{k}{m_0} \right)^{0.5} = \frac{1}{4\pi} \sqrt{\frac{E W}{m_0}} \left(\frac{T}{L} \right)^{1.5} \]

- \(k \) the spring constant, \(m_0 \) the effective mass of the lever.
- The softer the lever (smaller \(k \)), the more sensitive for detecting the deflection, but requires smaller mass to keep the high frequency. Why high \(f \) needed? (see next slide)

F: the force; k: the spring constant

k depends on the geometry and material

E- Young modulus, W- width, T - thickness, L - length
Environmental vibration should be isolated

\[\omega: \text{ the angular frequency, } = 2\pi f_0 \]

To remove high frequency noise, floating table needed.

\[\omega \propto k^2 \left\{ \begin{array}{l} \omega_d \text{ as small as possible (2Hz)} \\ \omega_m \text{ as high as possible (2kHz)} \end{array} \right. \]
Atomic interaction (force)

- The vibration frequency of atoms, ω, at room temperature $\sim 10^{13}$ Hz
- The mass, m, of an atom $\sim 10^{-25}$ kg
- The effective spring constant, k, between atoms is:
 \[k = \omega^2 m \approx 10 \text{ N/m} \]

A 0.1 nm (or 1 Å) distance between tip and sample means a force of 10^{-9} Newton, which is enough for deflecting the cantilever (commercial cantilever has k between 10^{-2} N/m $\leq k_c \leq 10^2$ N/m).

ω: the angular frequency, $= 2\pi f_0$
Vibration between two atoms

- Taking \(m = 10^{-25} \) kg and \(\omega_0 = 10^{13} \) Hz for atomic masses and vibrational frequencies, the spring constant of bi-atom vibration \(k_c = 10 \) N/m = 10 nN/nm. (proton mass = 1.672 621 71 \times 10^{-27} \) kg, neutron mass = 1.674 927 29 \times 10^{-27} \) kg, atoms mass ~ a few tens of protons or neutrons) (The **unified atomic mass unit** (u), or **dalton** (Da), is a small **unit** of **mass** used to express **atomic** and **molecular masses**. It is defined to be one twelfth of the mass of an unbound atom of \(^{12}\text{C}\) at rest and in its ground state) (\(^{12}\text{C}\) is the most **abundant** of the two **stable isotopes** of the element **carbon**, accounting for 98.89% of carbon; it contains 6 **protons**, 6 **neutrons** and 6 **electrons**)

- Even smaller spring constants can be easily obtained by minimizing the cantilever´s mass. Commercial cantilevers have a typical spring constant in the range of \(10^{-2} \) N/m \(\leq k_c \leq 10^{2} \) N/m, typical resonant frequencies in the range of \(1 \) kHz \(\leq f_0 \leq 500 \) kHz, a radius of curvature of the probing tip as small as 10 nm, and are usually fabricated of Si, SiO \(_2\) or Si\(_3\)N\(_4\).
Atomic interaction

Tip-Surface Force

Tip-Surface Distance

repulse regime (contact mode)

far away from surface (out of feedback)

attractive regime (non-contact mode)
Repulsion:
At very small tip-sample distances (a few angstroms) a very strong repulsive force appears between the tip and sample atoms. Its origin is the so-called exchange interactions due to the overlap of the electronic orbitals at atomic distances. When this repulsive force is predominant, the tip and sample are considered to be in “contact”.

Attraction (Van der Waals):
A polarization interaction between atoms: An instantaneous polarization of an atom induces a polarization in nearby atoms – and therefore an attractive interaction.
Raster scanning of piezoelectric scanner

S – Strain [Å/m], d – Strain coefficient [Å/V], E – Electric field [V/m]

Ideally, a piezoelectric scanner varies linearly with applied voltage.
Scanning step (resolution): 0.1 nm
Ideally, the intrinsic nonlinearity is the ratio $\Delta y/y$ of the maximum deviation Δy from the linear behavior to the ideal linear extension y at that voltage. It is in the range 2-25%.
Scanner Hysteresis

The hysteresis of a piezoelectric scanner is the ratio of the maximum divergence between the two curves to the maximum extension that a voltage can create in the scanner: $\Delta Y/Y_{\text{max}}$. Hysteresis can be as high as 20% in piezoelectric materials.
When an abrupt change in voltage is applied, the piezoelectric reacts in two steps: the first step takes place in less than a millisecond, the second on a much longer time scale. The second step, Δx_c, is known as creep.

Creep is the ratio of the second dimensional change to the first: $\Delta x_c / \Delta x$. It ranges from 1% to 20%, over times of 10 to 100 sec.
The aging rate is the change in strain coefficient (Å/V) per decade of time. The piezoelectric strain coefficient changes exponentially with time: increases with regular use, decreases with no use.
Software correction of scanner

Look-Up Table

32.1	45	98	14
44.5	682.7	532	87
347	595	469	3321
126	32	441	.46
3	34	21	368
67	349	.9997	221
2167	29	311	65
321.2	993	67	239
46.89	27	554	12
A sensor “reads” the scanner actual position, and a feedback system applies voltage to drive the scanner to the desired position, the total nonlinearity can be reduced to 1%.
Scanning artifacts

• Not-in good feedback (tip far from the sample surface).
• Electrical noise (particularly the periodical noise added to the internal signal).
• Environmental vibration (particular when the frequency is close to that of the tip oscillation).
• Fat-tip effect.
• Unknown tip-sample interaction (slowing down the scanning speed...).
Test of scanning artifacts

- **Repeat** the scan to ensure that it looks the same.
- Change the **scan direction** and take a new image.
- Change the **scan size** and take an image to ensure that the features scale properly.
- **Rotate** the sample and take an image to identify tip imaging.
- Change the **scan speed** and take another image (especially if you see suspicious periodic or quasiperiodic features).
Advantages of Scanning Probe Microscopy (SPM)

- Angstroms (atoms) to Nanometers (molecules);
- Digitalized and Computerized;
- Experimentally Versatile;
- Highly Tunable and Flexible to be Combined with Others;
- Wide Application in Surface and Nanotechnology.
Double functions: **scanning** and **probing**.

Scanning: piezo raster 2D (X-Y) scanning;
Probing: sharp tip mounted to a Z-scanner.
Comparison between traditional optical and electron microscopes and SPM

<table>
<thead>
<tr>
<th></th>
<th>probe</th>
<th>Mechanism</th>
<th>Sample</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional</td>
<td>Light/electron</td>
<td>Using properties of waves: diffraction, deflection, scattering</td>
<td>High vacuum chamber, Strict sample pre-treatment (e.g. conducting stain) required</td>
<td>Å – µm, good for X-Y lateral imaging</td>
</tr>
<tr>
<td>SPM</td>
<td>Tip</td>
<td>Using interaction between tip and sample: mechanic, electrostatic, magnetic.</td>
<td>Usually under ambient conditions, though high imaging resolution also requires high vacuum to keep clean surface, Highly flexible with other techniques</td>
<td>Å – nm, good for Z-height measurement, thus topography imaging</td>
</tr>
</tbody>
</table>

- SPM cannot replace electron microscopes, but complementary each other.
- SPM is not just superior in high resolution imaging, but more importantly it can target and manipulate just ONE atom or molecule.