Dry Etching

Dr. Bruce K. Gale
Fundamentals of Micromachining
BIOEN 6421
EL EN 5221 and 6221
ME EN 5960 and 6960

Etching Issues - Anisotropy

- Isotropic etchants etch at the same rate in every direction

Etching Issues - Selectivity

- Selectivity is the ratio of the etch rate of the target material being etched to the etch rate of other materials
- Chemical etches are generally more selective than plasma etches
- Selectivity to masking material and to etch-stop is important

Dry Etching Overview

- What is dry etching?
 - Material removal reactions occur in the gas phase.
- Types of dry etching
 - Non-plasma based dry etching
 - Plasma based dry etching
- Why dry etching?
- Development of dry etching
- Plasma parameters/influences
Dry Etching Advantages

- Eliminates handling of dangerous acids and solvents
- Uses small amounts of chemicals
- Isotropic or anisotropic etch profiles
- Directional etching without using the crystal orientation of Si
- Faithfully transfer lithographically defined photoresist patterns into underlying layers
- High resolution and cleanliness
- Less undercutting
- No unintentional prolongation of etching
- Better process control
- Ease of automation (e.g., cassette loading)

Dry Etching

- Disadvantages:
 - Some gases are quite toxic and corrosive
 - Re-deposition of non-volatile compounds
 - Need for specialized (expensive) equipment

- Types:
 - Non-plasma based = uses spontaneous reaction of appropriate reactive gas mixture
 - Plasma based = uses radio frequency (RF) power to drive chemical reaction

Non-plasma Based Dry Etching

- Isotropic etching of Si
- Typically fluorine-containing gases (fluorides or interhalogens) that readily etch Si
- High selectivity to masking layers
- No need for plasma processing equipment
- Highly controllable via temperature and partial pressure of reactants

Xenon Difluoride (XeF₂) Etching

- Isotropic etching of Si
- High selectivity for Al, SiO₂, Si₃N₄, PR, PSG
- \[2\text{XeF}_2 + \text{Si} \rightarrow 2\text{Xe} + \text{SiF}_4 \]
- Typical etch rates of 1 to 3 µm/min
- Heat is generated during exothermic reaction
- XeF₂ reacts with water (or vapor) to form HF
Interhalogen (BrF$_3$ & ClF$_3$) Etching

- Nearly isotropic profile
- Gases react with Si to form SiF$_4$
- Surface roughness: ~40 to 150 nm
- Masks: SiO$_2$, Si$_3$N$_4$, PR, Al, Cu, Au, and Ni

Plasma Based Dry Etching

- RF power is used to drive chemical reactions
- Plasma takes place of elevated temperatures or very reactive chemicals
- Types:
 - Physical etching
 - Chemical etching
 - Reactive ion etching (RIE)
 - Deep reactive ion etching (DRIE)

Plasma

- Plasma = partially ionized gas consisting of equal numbers of “+” (ions) and “-” (electrons) charges and a different number of neutral (un-ionized) molecules
- An ion-electron pair is continuously created by ionization and destroyed by recombination
- Typical kinetic energy (KE) of an electron in plasma is 2-8 eV
- KE = $\frac{1}{2} m V^2 = \frac{3}{2} kT$
 - m = particle mass
 - V = particle mean velocity
 - k = Boltzmann constant
 - T = temperature (K)

Plasma Formation

- Chamber is evacuated
- Chamber is filled with gas(es)
- RF energy is applied to a pair of electrodes
- Applied energy accelerates electrons increasing kinetic energy
- Electrons collide with neutral gas molecules, forming ions and more electrons
- Steady state is reached (plasma); ionization = recombination
Plasma Formation

- Plasma discharge is characterized by central glow or bulk region and dark or sheath regions near electrodes
- Bulk region = semi-neutral (nearly equal number of electrons and ions)
- Sheath regions = nearly all of the potential drop; accelerates “+” ions from bulk region which bombard the substrate
- Maintained at 1 Pa (75 mtorr) to 750 Pa (56 torr) with gas density of 27×10^{14} to 2×10^{17} molecules/cm3

Physical Etching (Sputter Etching)

- Based on physical bombardment with ions or atoms
- Plasma is used to energize a chemically inert projectile so that it moves at high velocity when it strikes the substrate
- Momentum is transferred during the collision
- Substrate atoms are dislodged if projectile energy exceeds bonding energy
- Very similar to ion implantation, but low-energy ions are used to avoid implantation damage
- Highly anisotropic
- Etch rates for most materials are comparable (i.e., no masking)
- Argon is the most commonly used ion source
- May result in redeposition

Plasma Parameters

- Temperature
 - Etching rate
 - Spontaneous chemical reaction
 - Etching directivity
- Pressure
 - Ion density
 - Ion directivity
- Power
 - Ion density
 - Ion kinetic energy
- Other variables
 - Gas flow rate
 - Reactor materials
 - Reactor cleanliness
 - Loading (microloading)
 - Mask materials

Two Basic Plasma Systems
Plasma Etching

Chemical (Plasma) Etching:

- Plasma is used to produce chemically reactive species (atoms, radicals, and ions) from inert molecular gas
- Six major steps:
 - Generation of reactive species (e.g., free radicals)
 - Diffusion to surface
 - Adsorption on surface
 - Chemical reaction
 - Desorption of by-products
 - Diffusion into bulk gas
- Production of gaseous by-products is extremely important

Plasma Etching Steps

Plasma Etching Systems

- Plasma Etching (PE)
- Barrel, barrel with downstream and symmetrical parallel plate system
- Pure chemical etching
- Isotropic etching
Reactive Ion Etching (RIE)

- RIE = process in which chemical etching is accompanied by ionic bombardment (ie ion-assisted etching)
- Bombardment opens areas for reactions
- Ionic bombardment:
 - No undercutting since side-walls are not exposed
 - Greatly increased etch rate
 - Structural degradation
 - Lower selectivity

Disadvantages of RIE

- Conflict between etching rate and anisotropic profile
 - Etching rate (+) → Reactive species concentration (+) → Gas pressure (+) → Collision (+) → Anisotropic (-)
- Conflict between damage of high etching rate and anisotropic profile
 - KE (+) → Etching rate (+) → damage (+)

Deep Reactive Ion Etching (DRIE)

- Uses electron cyclotron resonance (ECR) source to supplement RIE system
- Microwave power at 245 GHz is coupled into ECR
- Magnetic field is used to enhance transfer of microwave energy to resonating electrons
- DRIE uses lower energy ions → less damage and higher selectivity
- Plasma maintained at 0.5 to 3 mtorr
ECR Systems

- Electron Cyclotron Resonance (ECR)
- Higher plasma density at lower pressure
- Control the density of the reactive ions and their kinetic energy separately
- Downstream of plasma further limits the exposure to reduce damage

ICP System (DRIE)

- Inductively Coupled Plasma (ICP)
- Simple system
- Almost same process result as that from the ECR system
- Two RF power generators to control ion energy and ion density separately

Deep Reactive Ion Etch

- BOSCH Patent
- STS, Alcatel, Trion, Oxford Instruments …
- Uses high density plasma to alternatively etch silicon and deposit a etch-resistant polymer on side walls

Deep Reactive Ion Etching

- high density ICP plasma
- high aspect ratio Si structures
- cost: $500K
- vendors: STS, Alcatel, PlasmaTherm

Unconstrained geometry
90° side walls
High aspect ratio 1:30
Easily masked (PR, SiO2)
Process recipe depends on geometry

Source: LucasNova
Source: STS
Source: AMM
Scalloping and Footing Issues of DRIE

DRIE Structures

- Increased capacitance for actuation and sensing
- Low-stress structures
 - single-crystal Si only structural material
- Highly stiff in vertical direction
 - isolation of motion to wafer plane
 - flat, robust structures

Etch Chemistries

- Organic Films
 - Oxygen plasma is required
 - By-products: CO, CO₂, H₂O
 - Masks: Si, SiO₂, Al, or Ti
 - Addition of fluorine containing gases significantly increases etch rate but decreases selectivity (due to HF formation)

- Oxide and Nitride Films
 - Fluorine plasma is required (eg, CF₄)
 - Mask: PR
 - Addition of O₂
 - Increases etch rate
 - Adjusts PR : oxide and PR : nitride selectivity

- Silicon
 - Fluorine plasma (CF₄ or SF₆)
 - Chlorine plasma (Cl₂)
 - Mixed (fluorine and chlorine) plasma (Cl₂ + SF₆)