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ABSTRACT: Hyperbolic polaritons have been attracting increasing interest
for applications in optoelectronics, biosensing, and super-resolution imaging.
Here, we report the in-plane hyperbolic exciton polaritons in monolayer
black-arsenic (B-As), where hyperbolicity arises strikingly from two exciton
resonant peaks. Remarkably, the presence of two resonances at different
momenta makes overall hyperbolicity highly tunable by strain, as the two
exciton peaks can be merged into the same frequency to double the strength
of hyperbolicity as well as light absorption under a 1.5% biaxial strain.
Moreover, the frequency of the merged hyperbolicity can be further tuned
from 1.35 to 0.8 eV by an anisotropic biaxial strain. Furthermore,
electromagnetic numerical simulation reveals a strain-induced hyperbolicity,
as manifested in a topological transition of iso-frequency contour of exciton
polaritons. The good tunability, large exciton binding energy, and strong light absorption exhibited in the hyperbolic monolayer B-As
make it highly suitable for nanophotonics applications under ambient conditions.
KEYWORDS: Excitons, Hyperbolic materials, Two-dimensional materials, First-principles method

Two-dimensional (2D) van der Waals (vdW) materials
have attracted great attention due to their rich physical

properties originated from their reduced dimensionality1 and
potential in optoelectronic2,3 and spintronic applications.4 The
quantum confinement and reduced Coulomb screening in 2D
lead to enhanced Coulomb interactions giving rise to
formation of strongly bounded excitons,5,6 whose binding
energies are generally 1−2 orders of magnitude larger than in
3D semiconductors like GaAs7 and can even exceed the band
gap predicted to realize the elusive excitonic insulator state8

and excitonic Bose Einstein condensation.9 Experiment shows
light absorption from the lowest excitonic resonance is
extremely strong in 2D vdW transition metal dichalcogenides
(TMDs),10 up to 15% of incoming light at the atomically thin
limit. Furthermore, the properties of 2D excitons can be
effectively tailored by strain engineering11,12 via interlayer twist
and/or lattice mismatch in forming heterostructures.7,13−15

In recent years, diverse polaritons, originating from the
coupling of electromagnetic fields with electric dipoles, have
been discovered in vdW materials,16,17 in association with
plasmons,18,19 phonons,20 and excitons,21,22 as well as their
hybrids.23−25 Especially, exciton polaritons in 2D systems can
exhibit intriguing optical phenomena, such as the hyperbolic
dispersion that stems from highly anisotropic optical
permittivity which changes sign along different crystallographic
axes.26 The hyperbolic polaritons allow for extremely strong
electromagnetic confinements and high density of states,

providing promising applications for subdiffractional focus-
ing,27 wave-guiding,28 biosensing,29 and quantum photonics.30

Naturally, a hyperbolic exciton polariton emerges from some
form of structural anisotropy. It was first experimentally
observed in the layered TMD WSe2,

31 arising from the
anisotropy between the basal plane and out-of-plane z-axis.
Also, monolayer black phosphorus (B-P) with strong in-plane
anisotropy32 is found to host a hyperbolic exciton polariton,
whose intensity and frequency vary with the increasing film
thickness. On the other hand, hyperbolicity is defined with one
single exciton resonance, which occurs usually at a high-
symmetry k-point in most materials, such as the Γ-point for B-
P. This apparently limits both the availability and tunability of
hyperbolic exciton polaritons. In general, the emerging field of
hyperbolic exciton polaritons is still in its infancy; it is highly
desirable to discover 2D materials that host strong and tunable
hyperbolic exciton polaritons to facilitate their potential
applications.
In this study, we report the discovery of in-plane hyperbolic

exciton polaritons in monolayer black-arsenic (B-As) which
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was reported to exbibit extreme in-plane anisotropy in
electronic, thermal, and electric transport properties, as well
as a relatively good ambient stability.33,34 As a pleasant
surprise, the hyperbolicity in B-As was found to arise strikingly
from two exciton resonant peaks, in contrast to one peak found
previously. Particularly, one additional peak occurs at a low-
symmetry k-point, instead of the commonly seen peak at a
high-symmetry k-point. The additional exciton resonance is
revealed to arise from strong interchain hoppings between py
orbitals, a distinctive feature possessed by monolayer B-As with
weak sp hybridization. Most importantly, the presence of two
resonances enables the hyperbolicity to be highly tunable by
strain in both strength and frequency. The two exciton peaks
can be merged into the same frequency to double the overall
strength of hyperbolicity and light absorption under biaxial
tensile strain, much higher than those previously found in
monolayer TMDs and B-P. Moreover, the frequency of the
merged hyperbolic resonance can be tuned over a large range
from visible to near-infrared by applying an additional
anisotropic biaxial strain.
Monolayer B-As has an orthorhombic pleated honeycomb

structure in which each As atom is coordinated to three
neighboring atoms.33 Here, two in-plane principal axes, zigzag
and armchair, are designated respectively as x and y directions,
as illustrated in Figure 1a. To reveal excitonic effects in B-As,
we perform optical simulations by ab initio many-body
perturbation theory calculations within the GW approxima-
tion35 and the Bethe−Salpeter equation (BSE).36,37 Parts b
and c of Figure 1 show the calculated imaginary and real parts
of dielectric functions, respectively. Notably, one sees two
sharp exciton resonant peaks at 1.17 and 1.35 eV in Figure 1b.
The oscillator strengths of the two excitonic peaks are very
strong in the y direction but minimal in the x direction,
indicative of strong optical anisotropy. According to the
Kramers−Kronig relation, the strong absorption peak at a
given resonant frequency would result in a negative
permittivity close to this frequency.19 Figure 1c shows that
the high-energy excitonic peak in Figure 1b gives a sizable

negative permittivity in the y direction; meanwhile, the low-
energy excitonic peak leads to a weak negative permittivity in
the y direction. The negative permittivity at low energy is
counterbalanced by a significant positive permittivity induced
by the high-energy resonant peak due to the interference
between the two closely spaced exciton resonances. In contrast,
the permittivity in the x direction is positive and varies
smoothly below 1.5 eV (Figure 1c). Consequently, the sign-
changing optical permittivity along the two in-plane principal
axes is expected to generate one prominent hyperbolic region,
highlighted by the green shadow in Figure 1c, and one
relatively weaker hyperbolic region.
To identify the origin of exciton resonances in monolayer B-

As, we perform band decomposition analysis for the optical
transitions. Figure 1d shows the imaginary parts of dielectric
functions in the y direction contributed by full transition
involving all valence and conduction bands versus partial
transition involving only between the top valence band (TVB)
and the bottom conduction band (BCB). The transition
between TVB and BCB is found to be sufficient to capture the
overall excitonic signature in the low-energy region. The two
exciton resonant peaks originate from band edges of the TVB
and BCB at the Γ point and Λ point in the Γ−Y k-path,
respectively, as shown in Figure 1e (see also Figure S1 in the
Supporting Information). Here, we just focus on the band
dispersion near the Fermi level; thus, the band structures in
Figure 1e are calculated with exchange correlation energy using
the generalized gradient approximations (GGAs) instead of
GW approximations to circumvent expensive computational
cost. The electron and hole are inclined to bind, forming an
exciton at the conduction band minimum and the valence band
maximum at the same k point, in conjunction with the
parabolic dispersion around the extrema. For comparison,
monolayer B-P possesses only one parabolic band extrema at
the Γ point (Figure S1), and hence only one exciton resonant
peak in the optical absorption spectra.32

Interestingly, although B-As and B-P adopt a similar crystal
structure, B-As develops an additional parabolic band extrema

Figure 1. Optical dielectric function and electronic structure of monolayer B-As. (a) Schematic illustration of the crystal structure and its
interchain hopping between py-like Wannier orbitals. (b) Imaginary part and (c) real part of the dielectric function plotted with a broadening
parameter of 40 meV. (d) Comparison of the imaginary part of the dielectric function for the full-band transitions and the transition between top
valence and bottom conduction bands. (e) The variation of band dispersion in the vicinity of the Λ point with the interchain hopping integral
changed artificially from 100% to 0%. The band structures are calculated based on the conventional density-functional theory within the generalized
gradient approximations (GGAs).
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at the Λ point. To understand this intriguing difference, we
employ a tight-binding model to analyze the relationship
between band dispersion and the orbital interaction. The
model Hamiltonian is constructed in the subspace expanded by
12 p orbitals, constructed as the maximally localized Wannier
functions.38 We found that the band dispersion of TVB and
BCB at the low-symmetry Λ point in B-As is very sensitive to
the interchain hopping of py orbitals, as illustrated in Figure 1a.
The variation of the band dispersion of TVB and BCB with the
interchain hopping integral is shown in Figure 1e. Evidently,
the parabolic band extrema at Λ gradually disappear when the
interchain hopping is artif icially reduced. Thus, the additional
exciton resonant peak at Λ is attributed to the strong
interchain hopping between py orbitals in monolayer B-As,
which is absent in B-P. This difference is rooted in their
different bonding and orbital configurations, as we further
elaborate below.
In monolayer B-As, each As atom forms an sp3-like

hybridization to bond with three neighboring atoms with a
lone pair of electrons localized at one tetrahedral apex. The
lone pair electron exerts a large Coulomb repulsion on the
neighboring chemical bonds, resulting in a small bond angle of
the tetrahedral unit in B-As (see Figure S2a and d). Indeed, by
plotting the electron localization function (Figure S2b and e),
we observed that a lone pair of electrons with s-orbital
character in B-As is more pronounced than that in B-P. This
indicates a weaker s−p hybridization in B-As, so that the py
orbital can maintain its intrinsic characteristics lying in the
basal plane along the y-direction (Figure S1c). In contrast, the
stronger s−p hybridization in B-P causes the py orbital to be
oriented away from the basal plane and pointed toward one of
the tetrahedral apexes (Figure S1d). The weak s−p hybrid-
ization in B-As can be ascribed to the inner orbital contraction
caused by the relativistic effect of heavier elements, leading to a
larger separation of s and p sub-band energy levels (Figure S2c
and f). Consequently, the less hybridized py orbital in B-As
promotes a larger spatial overlap to enhance interchain
electron hopping, which is crucial for generating an extra
exciton resonant peak at the Λ point.
Besides the strong exciton resonances, the anisotropic nature

of the optical transition in monolayer B-As is a prerequisite for
the development of hyperbolicity. The forbidden transition in
the x direction below 1.5 eV is governed by the selection rule.
Monolayer B-As possesses a mirror plane parallel to the y
direction. Both the initial and final states at the band extrema
of the Γ and Λ points exhibit even parity with respect to the
mirror plane (Figure S3). As a result, the optical transition is
forbidden in the x direction. However, there is no such
restriction in the y direction. This selectivity in optical
transition results in a strong anisotropic dielectric environment
in B-As.
For technological applications, an important figure-of-merit

for the performance of hyperbolic polarization is tunability. In
general, excitonic behavior is strongly dependent on the
electronic optical gap and band dispersion. Strain engineering
has been well established to tune the band structures of
semiconductors,39,40 especially 2D materials41 which can
sustain much larger strain than their 3D counterparts.42

Here, we explore the effects of strain on the hyperbolicity of
excitons. First, we calculated the imaginary and real parts of the
dielectric function for monolayer B-As under biaxial strain. We
found that the two exciton resonant peaks will undergo an
energy separation under a compressive biaxial strain, such as

the case of 2.5% strain shown in Figure 2a. This in turn leads
to two distinct hyperbolic energy regimes around 0.9 and 1.45

eV, respectively, as shown in Figure 2b, and a weakened
interference between the two separated exciton resonant peaks.
Conversely, applying a tensile biaxial strain drives the two
peaks closer. Most interestingly, when 1.5% tensile strain is
applied, the two exciton resonant peaks merge to the same
frequency being combined into one single strong resonant
peak, as shown in Figure 2c. Such enhanced excitonic
resonance results in a significant negative permittivity in the
hyperbolic energy regime at around 1.35 eV (Figure 2d).
We also applied an anisotropic biaxial strain, in addition to

the aforementioned biaxial strain, to further engineer the
hyperbolicity of exciton [see details in the Supporting
Information (Figure S7)]. Most significantly, the strong
combined exciton resonant peak can be tuned from 1.35 to
∼0.8 eV, namely, from the visible to infrared range. This makes
it more suitable for practical telecom applications.
As shown in Figure 2a, the oscillator strength of each exciton

resonant peak under compressive strain varies only slightly in
comparison with the unstrained structure (Figure 1b), and the
intensity of the single combined exciton resonant peak under
1.5% tensile strain (Figure 2c) is approximately equal to the
sum intensity of the two separate peaks in the pristine state.
Therefore, the tunability of excitonic resonances via strain is
achieved by almost rigid shifts of two peak positions instead of
the oscillator strength. The positions of the exciton resonant
peaks in k-space are further confirmed by the exciton wave
function plots (Figure S6). The exciton resonant peak with
lower energy originates from the Γ point, whereas the other
peak originates from the Λ point. As shown in Figure 3a, the
binding energies of the two excitonic states undergo only
minor variations with strain. However, the single-particle
bandgap at Γ shows a noticeable increase as a function of strain
but remains almost unchanged at Λ. Similar to the trends of
the changing bandgap, the position of the exciton peak at Γ
exhibits a significant increase with strain, whereas the peak at Λ
shows little variation. This indicates that the strain modulated

Figure 2. Optical dielectric functions of strained monolayer B-As.
(a) Imaginary part and (b) real part of dielectric functions under 2.5%
compressive biaxial strain. (c) Imaginary part and (d) real part of
dielectric functions under 1.5% tensile biaxial strain. The hyperbolic
regimes are highlighted with a green shadow.
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bandgap at Γ, causing the shift of the Γ-point exciton resonant
peak, plays a crucial role in strain tuning the hyperbolicity of
monolayer B-As.
To gain further insight into the relationship between the

bandgap and the position of the exciton peak, we analyze band
structures under various strain conditions. As shown in Figure
3b, the position of BCB around Γ clearly shifts with strain,
accounting for the modulated local Γ-point band gap, while
that of TVB remains largely unchanged. In contrast, the band
feature around Λ is less affected by strain, consistent with the
minor variation observed in the local Λ-point band gap. On the
other hand, however, the exciton binding energy is much less
sensitive to strain at Γ. It is defined as the energy difference
between the peak position and the conduction band minimum
(Figure S4), indicating that the position of the exciton peak at
Γ is primarily fixed relative to the edge of the BCB. The
exciton binding energies at Γ and Λ are further examined using
the Mott−Wannier model43 (see details in the Supporting
Information). The difference in binding energy between the
two exciton resonant states arises from the distinct exciton
reduced masses at the Γ and Λ points (Figure S9), which plays
also an important role in inducing two excitonic resonances.
Moreover, the exciton binding energy is less sensitive to strain
due to the fact that both the effective masses and dielectric
screening are less sensitive to strain (see Figures S9 and S10).
The strain induced modulation of the BCB at the Γ point

can be understood from a bonding orbital viewpoint. The wave
function at the minimum of BCB exhibits bonding character, as
shown in Figure 3c, while the next band above BCB displays an
antibonding character (Figure S5). It is known that the energy
difference between the bonding and antibonding states
depends on the degree of orbital hybridization; the larger the
hybridization, the larger the difference. Thus, the minimum of
BCB with bonding character will be lowered under
compressive strain, enhancing orbital hybridization, and raised

under tensile strain, weakening orbital hybridization, respec-
tively. Conversely, the next band above BCB with antibonding
character displays opposite trends with strain (Figure S5).
Finally, we demonstrate direct strain engineering of

hyperbolic exciton polaritons in monolayer B-As, based on
dielectric functions calculated from ab initio many-body
perturbation theory and electromagnetic numerical simula-
tions. As shown in Figure 4a, the numerically simulated exciton

polariton for pristine monolayer B-As displays an elliptical
(closed) dispersion at 1.48 eV, as the permittivities along two
in-plane principal axes are both positive. In contrast, under
2.5% compressive strain, the exciton polariton exhibits a
hyperbolic (open) dispersion in Figure 4b, due to the strain-
tuned negative permittivity in the y direction. This signifies a
strain-induced hyperbolicity, namely, a topological transition of
iso-frequency contour of exciton polaritons at the same
frequency. The near-field amplitude distribution in pristine
monolayer B-As exhibits an elliptically shaped radial
propagation at 1.48 eV (Figure 4c) that matches with the
isofrequency dispersion curve in reciprocal space. Then, one
can expect that the monolayer B-As under compressive strain
can support a concave wavefront for the near-field amplitude
distribution (Figure 4d), with the opening direction along the
y principal axis. Moreover, the numerical simulations reveal
that the in-plane hyperbolic polariton can result in high-field
confinements with the wavelength up to 52 times smaller than
that of free space, which enables focusing and manipulation of
electromagnetic waves at a deep subwavelength scale. In
addition, the near-field amplitude distribution in monolayer B-
As under 1.5% tensile strain also exhibits hyperbolic
propagation behavior with evident light confinement at 1.4
eV. Compared to the pristine monolayer B-As, the opening
angle of the hyperboloid decreases with the applied tensile

Figure 3. The dependence of band features and exciton properties
of monolayer B-As on the applied biaxial strain. (a) Band gap,
exciton peak position, and binding energy as a function of the in-plane
biaxial strain. (b) Strain modulated band dispersions within GGA in
the vicinity of the Fermi level. (c) Top view of wave functions for the
bottom conduction band at Γ with and without strain.

Figure 4. Strain-induced topological transition of the iso-frequency
contour of exciton polaritons in monolayer B-As. (a, b) Iso-
frequency contours of exciton polaritons at 1.48 eV without strain (a)
η = 0% and with strain (b) η = −2.5%. (c, d) The numerically
simulated amplitudes of the real part of the near-field distributions at
1.48 eV without strain (c) η = 0% and with strain (d) η = −2.5%.
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strain (see Figure S11), leading to strongly trapped electric
fields in the associated cone that are conducive to efficient
energy transmission and improved directional propagation.
In summary, we have revealed in-plane hyperbolic polaritons

in monolayer B-As that originate from two exciton resonances
in combination with their anisotropic oscillator strengths along
two in-plane principal axes. The enhanced interchain orbital
hopping, resulting from the weaker asymmetric sp3-like
hybridization, gives rise to one extra exciton resonant peak at
Λ in the Γ−Y k-path, in addition to the common peak at Γ as
in B-P. The resonant peak at Γ exhibits a high tunability by
strain. Especially, a biaxial tensile strain can move the Γ-point
peak toward the Λ-point peak and merge into the same
frequency, to significantly enhance the overall hyperbolicity
and light adsorption. The merged exciton resonant peak can be
further tuned across various frequency regimes by applying an
additional anisotropic biaxial strain. Moreover, with electro-
magnetic numerical simulations, we obtain directly a variety of
propagation patterns of hyperbolic polaritons based on
dielectric functions obtained from ab initio calculations,
which can be useful guidance for future experiments. In
addition to B-As, other 2D group-V monolayer materials such
as Sb and Bi also exhibit similar puckered lattice structures
along with additional ferroelectric polarization.44 Moreover,
their band dispersions are likely to generate multiple excitonic
resonances to induce hyperbolic polaritons, which we expect to
also be tunable by strain.
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