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To efficiently integrate cutting-edge terahertz technology into com-
pact devices, the highly confined terahertz plasmons are attracting
intensive attention. Compared to plasmons at visible frequencies in
metals, terahertz plasmons, typically in lightly doped semiconductors
or graphene, are sensitive to carrier density (n) and thus have an easy
tunability, which leads to unstable or imprecise terahertz spectra. By
deriving a simplified but universal form of plasmon frequencies,
here, we reveal a unified mechanism for generating unusual
n-independent plasmons (DIPs) in all topological states with different
dimensions. Remarkably, we predict that terahertz DIPs can be ex-
cited in a two-dimensional nodal line and one-dimensional nodal
point systems, confirmed by the first-principle calculations on almost
all existing topological semimetals with diverse lattice symmetries.
Besides n-independence, the feature of Fermi velocity and degener-
acy factor dependencies in DIPs can be applied to design topological
superlattice and multiwalled carbon nanotube metamaterials for
broadband terahertz spectroscopy and quantized terahertz plas-
mons, respectively. Surprisingly, high spatial confinement and quality
factor, also insensitive to n, can be simultaneously achieved in these
terahertz DIPs. Our findings pave the way for developing topological
plasmonic devices for stable terahertz applications.

low-dimensional materials | topological semimetals | plasmon | terahertz |
electronic structures

Bridging the gap between microwave and infrared regimes,
terahertz radiation promises many cutting-edge applications in

radar, imaging, biosensing, nondestructive evaluation, and ultrahigh-
speed communications (1, 2). While realizing compact terahertz
integrated circuits is a big challenge, terahertz plasmons, collective
oscillations of electrons at terahertz frequency, provide a revolu-
tionary way to effectively reduce the sizes of terahertz devices
down to subwavelength scales (3–8). To achieve highly confined
terahertz plasmons, the extensive research has been devoted to var-
ious metamaterials, including spoof plasmon polaritons in structured
metal surfaces (7–10), terahertz plasmons in lightly doped semicon-
ductors (2, 11–13), and recently developed graphene plasmons
(14–16). Compared to the plasmons at visible or ultraviolet (UV)
frequency in metals with ultra-high intrinsic charge density (n), the
terahertz plasmons (e.g., in doped semiconductors and graphene
with ultra-low n) are quite sensitive to the oscillation of n (13–18),
as a low n can be greatly changed by the defects (17), thermal
fluctuation (2, 16, 19), charge inhomogeneity (20), electrical gating
(14, 16, 18), optical excitations (21–23), or charge transfer at in-
terface (Fig. 1A). Consequently, their fundamental properties,
such as resonance frequency, confinement, and loss of terahertz
plasmons (2, 16–18), will be largely affected by the surrounding
environments. Therefore, the n-dependence feature leads to un-
favorable terahertz applications, such as low temperature limit,
high-quality sample requirements, unstable or imprecise terahertz
sources, and detection.
It is known that the classical plasmon frequency in conventional

electron gas (EG) has an n1=2 dependence, while graphene plas-
mon shows a weaker n1=4 power-law scaling (14, 15). Recently, the

linear band structures have been extended to a large number of to-
pological semimetals (TSMs) (24, 25), following the fast development
of topological matter. Surprisingly, the plasmons with diverse n
dependencies have been found in these TSMs even though they
have a similar linear band crossing as graphene. For example, the
plasmon frequency of three-dimensional (3D) Dirac systems
shows n1=3 scaling (26), while unconventional n0-dependent plas-
mons solely in midinfrared have been found in one-dimensional
(1D) metallic carbon nanotubes (CNTs) (27) or 3D nodal-surface
electrides (28). Since most previous theories are system depen-
dent, a unified theory to intuitively understand all these plasmonic
behaviors in different electronic systems is still lacking, which
significantly prevents the design of superior metamaterials for
revolutionary terahertz technology and overcoming the intrinsic
terahertz-unstable bottlenecks in conventional plasmonic devices.
In this article, we derive a simplified but universal form of plas-

mon frequencies at a long-wavelength limit that can be applied to
understand the collective excitations of all electronic systems with
different dimensions. Significantly, a unified mechanism is revealed
for generating n-independent plasmons (DIPs), which can be excited
in some specific topological states. As demonstrated in Fig. 1A, the
properties of a DIP, such as its resonance frequency or wavelength,
are not affected by the changes of n, which can fundamentally
overcome intrinsic terahertz-unstable bottlenecks raised by
n-dependent plasmons (DDPs) in conventional systems. Impor-
tantly, we predict that the terahertz DIPs can be realized in two
reduced systems: two-dimensional (2D) nodal line and 1D nodal
point. Extensive first-principle calculations are employed to confirm
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the DIP excitations among 22 known 2D nodal line semimetals
(NLSMs) and 1D CNTs. Besides the n independence, the frequen-
cies of DIPs can be tuned by Fermi velocity, substrate screening, and
degeneracy factor, revealing that a novel, ultrastable terahertz
spectrum from narrowband to broadband and a tunable quan-
tization can be achieved in 2D superlattice and 1D multiwalled
CNT metamaterials, respectively. Remarkably, stable perfor-
mance with high spatial confinement and quality factor, critical
for device applications, can be simultaneously obtained for
terahertz DIPs.

Results
A Unified Mechanism for DIPs. The plasmon excitation can be deter-
mined by the dynamical dielectric function e(q,ω) = 1 − V (q)Π(q,ω),
where V (q) is dimension-related Coulomb interaction in the wave
vector space, and Π(q,ω) is the irreducible polarizability function
(Methods). As a function of Fermi energy (EF), the key polarizability
is usually n dependent. Under random phase approximation (RPA)
and long-wavelength limit, the D-dimensional noninteracting irre-
ducible polarizability near EF can be approximated by Taylor’s first-
order expansion (SI Appendix, section II):

Π(q,ω) ≈ g

(2π)D ∫ dDk 
∂nF

∂E
(∂E
∂k

)2( q
Zω

)2 [1]

where nF is the Fermi–Dirac distribution function, and g is the
degeneracy factor, including degeneracies of spin, valley, and
conducting channel. Around T = 0 K, we derive, by solving the
zeros of dielectric function, a simplified but general form of the
plasmon frequency,

ωp ≈ ρ(EF)1=2vFV (q)1=2q [2]

,
where ρ(EF) is the density of states (DOS) of electrons, and
vF = Z−1(∂E=∂k)F is the Fermi velocity. Eq. 2, one of our key

results, is universal for all dimensional solids, which reveals the
most essential elements related to plasmons. Obviously, it shows
that, besides V (q), ωp is mostly determined by DOS and vF.
Now, we can shed light on the nature of n dependence of

plasmons for all known systems. For the conventional EGs in
metals or doped semiconductors exhibiting a parabolic energy
dispersion E(k) = Z2k2=2m, the vF is EF (or n) dependent. As
listed in Table 1, the DOS of conventional EGs is related to their
dimensions (SI Appendix, section I). Based on Eq. 2, ωp of all con-
ventional EGs has a well-known n1=2 power-law scaling (Table 1).
While all the TSMs have a linear band dispersion, E(k) = ZvFk,
whose vF is a constant. In terms of the dimensionality of band
crossings, TSMs can be classified into nodal point, nodal line, and
nodal surface (24, 25, 29). As demonstrated in Table 1, the ωp of
TSMs has different scalings, solely dependent on their DOS.
As shown in the right column of Table 1, we have rigorously

derived the analytical expressions of ωp for all systems with dif-
ferent dimensions (Methods and SI Appendix, section II), con-
firming that Eq. 2 could accurately capture the power-law scaling
of ωp; for example, the n1=4 and n1=3 DDPs are well reproduced
for 2D (e.g., graphene) and 3D nodal point (e.g., Dirac semi-
metal) systems, respectively. Interestingly, a plasmon with the
same n-dependent scaling as graphene also appears in 3D nodal
line systems, but it has a different anisotropy. In fact, all the an-
alytical expressions in Table 1 can be obtained from Eq. 2 with
only a difference of dimensionless coefficient.
Based on Eq. 2, we can reveal a unified mechanism for real-

izing a DIP, which needs to meet two general criteria: 1) a
constant DOS near EF and 2) a constant vF. While 2 can be
naturally achieved in the linear band dispersion region of a TSM,
1 is the key criterion for achieving a DIP. After systematic der-
ivations (SI Appendix, sections I and II), we conclude that the
constant DOS and the resulting DIPs can solely exist in the
following TSM states: 3D nodal surface, 2D nodal line, and 1D
nodal point, as listed in Table 1. It is noted that the plasmons
that occurred in wide parabolic quantum wells (30, 31) can be
independent of the electron numbers (not electron density) un-
der certain conditions, which is fundamentally different from our
DIPs. We illustrate the constant DOS of 2D nodal line and 1D
nodal point in Fig. 1B. At long-wavelength limit, the excitation
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2D nodal line 1D nodal point

ωp(q)eeeeeee------
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Fig. 1. DIPs and their realizations. (A) Schematic comparison between DDP
and DIP. Concentric red, blue, or orange circles illustrate plasmon waves
excited by electron systems (represented by the cyan plane). For an excited DDP,
its resonance frequency (ωp) or wavelength (λp) is sensitive to the oscillation of
n. When increasing (red arrow) or decreasing (blue arrow) n, the ωp or λp of a
DDP will increase (red circles) or decrease (blue circles) correspondingly. The
properties (ωp or λp) of a DIP (orange circles) are stable against the changes of n.
(B) Linear band structures of 2D nodal line and 1D nodal point and their con-
stant DOS versus EF. Collective DIPs are labeled schematically by red arrows.

Table 1. Plasmon frequencies in all dimensions at long-
wavelength limit*

Systems ρ ρ1=2 ·vF Analytical expression of ωp

3D Conventional
EG

E1=2
F ðn1=3Þ n1=2

ffiffiffiffiffiffiffiffiffiffi
4πe2n
κm

q
(3.1)

Nodal point E2
F ðn2=3Þ n1=3

ffiffiffiffiffiffiffi
e2vF
κZ

q �
32πg
3

�1=6

n1=3 (3.2)

Nodal line EFðn1=2Þ n1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πe2vF

κZ ð1þ sin2θÞ
q

ðgπk0nÞ1=4(3.3)

Nodal surface E0
F ðn0Þ n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ge2vF Scos2θ

π2κZ

q
(3.4)

2D Conventional
EG

E0
F ðn0Þ n1=2

ffiffiffiffiffiffiffiffiffiffi
2πe2n
κm

q
q1=2 (3.5)

Nodal point EFðn1=2Þ n1=4
ffiffiffiffiffiffiffi
e2vF
κZ

q
ðgπnÞ1=4q1=2 (3.6)

Nodal line E0
F ðn0Þ n0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ge2vFk0

κZ

q
q1=2 (3.7)

1D Conventional
EG

E�1=2
F ðn�1Þ n1=2

ffiffiffiffiffiffiffiffi
2e2n
κm

q
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijlnðqaÞjp
(3.8)

Nodal point E0
F ðn0Þ n0

ffiffiffiffiffiffiffiffiffiffiffi
2ge2vF
πκZ

q
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijlnðqaÞjp
(3.9)

See SI Appendix, sections I and II for the detailed derivations. Systems
exhibiting DIPs are in bold. All conventional EGs have a parabolic dispersion,
while all TSMs have a linear dispersion.
*Physical quantities: DOS ρ, Fermi velocity vF, electron charge e, effective
mass m, background dielectric constant κ, degeneracy factor g, size of line
(surface) node k0 (S), and lateral confinement size of 1D electron system a.
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process mainly occurs near EF. For 2D nodal line, all states involved
are in the vicinity of two rings, and the total numbers of their sum
will keep a constant when changing EF (Fig. 1B). For 1D nodal
point, the total states in the excitations are at two points, and their
numbers are also unchanged (Fig. 1B). It is noted that all systems
are supposed to behave as Fermi liquids, although 1D metallic
electrons may also be considered as a Luttinger liquid (32).
As listed in Table 1, the analytical expressions clearly dem-

onstrate the nature of DIPs in 3D nodal surface, 2D nodal line,
and 1D nodal point. Besides the n independence, the ωp is de-
termined by some other physical quantities (i.e., Fermi velocity
vF, degeneracy factor g, and size of degenerate node [k0 for line
node and S for surface node]), giving the tunable factors. In-
terestingly, the ωp of all TSMs is manifestly quantum with an
explicit “Z,” in contrast to the classical plasmons of conventional
EGs (26). In addition, the plasmon dispersion is related to the
dimension, which is important for the size effect and spatial
compression of plasmons. In order to realize the terahertz
metamaterials, we focus on 2D nodal line and 1D nodal point
systems [the high DOS prevents the realization of terahertz ωp in
a 3D nodal surface (28)]. The background dielectric constant (κ)
of these two systems is determined by the surrounding media,
providing another tunable factor of ωp.

Terahertz DIPs in 2D NLSMs. The 2D NLSMs, having a symmetry-
protected crossing between conduction and valence bands along
a 1D loop in the Brillouin zone (BZ), attract intensive interests
because of their potential applications in quantum devices. Until
now, the 2D NLSMs include at least 22 compounds with a wide
range of lattice symmetries, such as honeycomb lattice CuSe
(33), AgTe (34), and h-B2O (35); honeycomb-Kagome lattice
Hg3As2 (36); honeycomb-triangular lattice Cu2Si (37); Lieb lat-
tice Be2C (38); and tetragonal lattice X2Y (X = Ca,Sr,Ba; Y =
As,Sb,Bi) (39). These 2D nodal lines are protected by (glide)
mirror symmetries. Importantly, all these NLSMs can exhibit the
terahertz DIP feature, confirming our unified theory in 2D sys-
tems. Here, we take the experimentally synthesized Cu2Si as an
example to demonstrate its DIP excitations, leaving the results of
the other 21 compounds in SI Appendix, section IV.
As shown in Fig. 2A, the monolayer Cu2Si is composed of a

honeycomb Cu lattice and a triangular Si lattice. All Cu and Si
atoms are coplaner, and thus a mirror reflection symmetry in
respect to the xy plane (Mz) is kept. First, we illustrate the
electronic properties of free-standing Cu2Si. The calculated band
structure without spin-orbit coupling (SOC) is shown in Fig. 2B.
Two band crossings between one conduction band and two va-
lence bands occur along Г–M and Г–K lines. Actually, the band
crossings take place along two loops in the 2D BZ, as shown in
the 2D band plot (Fig. 2C). Thus, two concentric nodal lines are
formed centered around the Г point. With opposite eigenstate
parities ofMz for the conduction and two valence bands (37), the
two nodal lines are protected by mirror reflection symmetry (SI
Appendix, Fig. S1). Remarkably, the nearly constant DOS is
maintained over a large energy range near the Fermi level
(Fig. 2B), which is the key condition for the formation of DIP
excitations in a TSM. After including the SOC effect, the de-
generacy of the 2D nodal line is slightly lifted with the appear-
ance of a negligible gap (37) (SI Appendix, Fig. S1).
Next, we discuss the plasmon excitation of Cu2Si. The dy-

namical dielectric function e(q,ω) is numerically calculated with
2D Coulomb interaction, V (q), and a background dielectric
screening of SiO2/Si substrate (Methods). An electron energy loss
spectrum (EELS) is given by the imaginary part of the inverse of
e(q,ω), whose broadened peaks indicate the plasmons (28). As
shown in Fig. 2D, a 2D plasmon dispersion (ωp ∼ q1=2) is dem-
onstrated; similar to the case of graphene plasmons (40), it lies
above the region of intraband electron-hole continuum,

indicating that the direct Landau damping is forbidden. Using a
typical micrometer wavelength (q = 0.0001 Å−1), we plot the
EELS as a function of ωp and EF (corresponding to n) in Fig. 2E;
it shows a clear n-independent feature (ωp ∼ n0), confirming the
existence of DIP. As a comparison, the inset of Fig. 2E shows
calculated results of graphene plasmon, agreeing well with the
experimental data (red circles) (14); the well-known ωp ∼ EF

1=2

(∝ n1=4) relationship of graphene plasmon is revealed. In addi-
tion, the plasmon of Cu2Si has a significantly larger oscillation
strength than that of graphene because of the higher DOS.
At a fixed micrometer wavelength, the plasmon of Cu2Si stabi-

lizes at a certain THz frequency with high intensity (Fig. 2E). As
shown in Formula 3.7 in Table 1, the ωp of 2D nodal line can be
tuned by changing Fermi velocity, vF, and line node size, k0, which is
demonstrated by the strain effect on Cu2Si (Fig. 2F and SI Ap-
pendix, Fig. S2). The calculated ωp and (vFk0)1=2 have a consistent
trend, confirming the validity of Formula 3.7. It notes that strain has
a small effect on the change of vF and k0; consequently, ∼5% strain
can slightly induce a ∼2 THz change of ωp. On the other hand, ωp is
also sensitive to the background dielectric constant κ (Formula 3.7).
As shown in Fig. 2G, we further compare the ωp of Cu2Si on two
substrates, that is, Si(111) and hexagonal boron nitride (h-BN), with
quite different κ. Importantly, the nodal lines can survive on both
substrates (SI Appendix, Fig. S3). Interestingly, a threefold fre-
quency change, from terahertz to midinfrared, can be achieved by
simply changing the underneath substrate of Cu2Si.

A Broadband Terahertz Spectroscopy in 2D NLSM Metamaterials. The
intrinsic properties of nodal line (e.g., vF and k0) are material
dependent, indicating that a broad range of DIPs with different
ωp may be achieved by the choice of different TSMs. Indeed, the
DIP features are not only confirmed in all other NLSMs (SI
Appendix, Figs. S4–S11) but also exhibit a broad range from 4
THz (in Ca2As) to 16 THz (in h-B2O) (Fig. 3A and SI Appendix,
Table S2). Once again, the ωp obtained from Formula 3.7 fits
well with the first-principle results independent of their diverse
lattice symmetries, except for the case of h-B2O, which is due to
the strong anisotropy of its nodal line (35) (SI Appendix, Fig. S7).
Recently, the development of 2D van der Waals (vdW) heter-

ostructures enables manipulating crystals for exploration of phys-
ics not observable in conventional materials (41, 42). Employing
the heterostructures (or superlattice) of 2D NLSMs, here, a novel
ultrastable terahertz metamaterial device can be proposed, as
drawn in Fig. 3B. For vdW stackings of 2D NLSMs, a compensation
momentum is necessary for incident light, which can be realized in
the scattering-type scanning near-field optical microscopy
(s-SNOM) technology (16, 27). The 2D NLSMs can also be fabri-
cated in microribbon arrays on transparent substrates (14); thus, a
grating superlattice can be well-designed by stacking them layer by
layer (Fig. 3B). Determined by the selections of fabricated NLSMs,
ribbon/gap width, and even substrates, multiple terahertz-frequency
plasmons can be simultaneously excited. For instance, one can
adopt the same or different materials/pattern periods for fabrica-
tions. Thus, a terahertz spectroscopy from narrowband to broad-
band can be achieved. Most importantly, the spectroscopy in such a
device could be ultrastable under the variable environments against
charge doping. Our proposed device can be used as an ultrastable
terahertz signal amplifier or an ultrastable terahertz sensor, which
could selectively output or detect multiband terahertz waves.

Terahertz DIPs in 1D CNTs. The nodal point semimetals have been
widely studied (e.g., Dirac points in 2D graphene or 3D Na3Bi)
(25). To confirm our DIP model in 1D nodal point systems (For-
mula 3.9 in Table 1), armchair CNTs have been selected as typical
examples, as they are known as 1D Dirac-point semimetals (43).
The structure and 1D Dirac bands of armchair CNTs are shown

in SI Appendix, Fig. S12. The calculations of (5, 5), (10, 10), and
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(15, 15) nanotubes reveal that the vF of Dirac electrons are almost
independent of their tube diameters a and all of them have a
constant DOS near the Fermi level (SI Appendix, Fig. S12). Using
1D Coulomb interaction and a BN substrate dielectric screening
(Methods), the e(q,ω) and EELS of these CNTs can be obtained.
As shown in Fig. 4A, the plasmon dispersion of (5, 5) nanotube
demonstrates a typical 1D feature (ω ∼ |q| at long wavelength). It also
lies above the region of intraband electron-hole continuum without
direct Landau damping. With a micrometer wavelength (q = 0.0001
Å−1), the EELS as a function ofωp andEF (corresponding to n) for (5,
5) and (10, 10) nanotubes is calculated, as shown in Fig. 4B. Re-
markably, the terahertz DIP feature (ωp ∼ n0) is revealed for both
CNTs, and the ωp calculated from first principles are consistent with
the analytical results (red dashed lines in Fig. 4B). Moreover, theωp of
CNTs are almost a independent as a result of the weak a-dependent
vF (i.e., there is only a weak logarithm dependence on the diameter of
CNTs) (44) (see Formula 3.9 in Table 1). Interestingly, the recent
experimental observations on metallic nanotubes with different di-
ameters confirm the existence of midinfrared DIPs (27). Our results
are in good agreement with the experimental measurements (red tri-
angles in Fig. 4A), also reflecting the weak a dependence.

Quantized Terahertz Plasmons in 1D CNT Metamaterials. In terms of
Formula 3.9, the weak a dependence indicates that ωp of CNTs is
mostly determined by the degeneracy factor g. In multiwalled
nanotubes (MWNT), the Dirac points could maintain due to the
weak vdW interactions between the individual tubes (SI Appendix,
Fig. S12); meanwhile, the long-range Coulomb interactions make
conducting channels of electrons determined by the number of
walls (Nw). Thus, we propose that a quantized terahertz, ωp, may
be achieved in MWNT metamaterials. As shown in Fig. 4B, the
calculated plasmon excitations of (5, 5)@(10, 10) double-walled

nanotubes and (5, 5)@(10, 10)@(15, 15) triple-walled nanotubes
are demonstrated. Interestingly, besides the DIP feature, the ωp of
MWNT can exhibit a clear, quantized plateau as a function of Nw,
as shown in Fig. 4C. It notes that a similar quantization of prop-
agation velocity has been observed in single-walled CNT bundles
(27), explained by a many-body Luttinger liquid theory. Impor-
tantly, differing from the previous theory (27), the emergence of
quantized ωp comes naturally from our unified DIP theory in 1D
system (Formula 3.9). Therefore, a quantized manipulation of
ultrastable teraherz plasmons using a series of MWNT can be
well designed (Fig. 4D) (e.g., discrete frequencies or wavelengths
can be excited at different thickness of a telescoping MWNT).
Meanwhile, an s-SNOM technology may be needed (16, 27).

Spatial Confinement and Lifetime of Terahertz DIPs. As two impor-
tant figures of merit for plasmonics, spatial confinement and quality
factor are also calculated for the DIPs in 2D NLSMs and 1D CNTs
in comparison to graphene plasmon (Fig. 5 and SI Appendix, Fig.
S13). The spatial confinement, defined as the ratio of free-space
light wavelength and plasmon wavelength (λ0=λp), is found to be
related to the dimensions; when increasing the ωp, it can be en-
hanced for 2D systems but almost unchanged for 1D plasmons,
consistent with the theoretical derivations (Fig. 5A and SI Appendix,
section VII). Strong confinement effect is available for terahertz
DIPs [e.g., in (5, 5) CNTs and Ca2As] (Fig. 5A), which is critical for
the design of compact devices. The quality factor (Q), measuring
the number of oscillating cycles a plasmon can propagate, is related
to the plasmonic damping rate or lifetime. Due to the forbidden or
weak direct Landau damping, the phonon-assisted damping rate of
plasmons is solely considered (Methods). The calculated lifetimes
(τp) can reach tens of picoseconds at low ωp but reduce rapidly
when ωp increases to the frequency of optical phonons (Fig. 5B).

A B C

D E F G

Fig. 2. DIP in 2D NLSM Cu2Si. (A) Top and side views of monolayer Cu2Si. Black rhombus depicts primitive cell. (B) Calculated band structure and DOS (without
SOC) for Cu2Si. Fermi level is set to zero. (C) 3D plot of 2D bands in the energy range from −1.2 to 0.8 eV (green region in B). Band crossings between
conduction and two valence bands are projected to the 2D BZ (red and blue loops). (D) EELS as a function of frequency and wave vector. The white dashed line
denotes the upper edge ZvFq of intraband particle-hole continuum. (E) EELS as a function of frequency and Fermi energy (q = 0.0001 Å−1). (Inset) EELS of
graphene plasmon with the same calculation parameters as Cu2Si. Experimental data of graphene (14) are marked as red circles (their brightness indicates the
plasmon oscillation strength). (F) Calculated plasmon frequency and related physical quantities obtained from band structures under strain. (G) Plasmon frequency
with two different substrates. Solid columns: numerical results from first principles; hollow columns: analytical results calculated from Formula 3.7 in Table 1.
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Usually, strong spatial confinement of a plasmon is achieved at
the expense of a low quality factor for metals. Remarkably, the cal-
culated midinfrared graphene plasmon (e.g., at 30 THz) could si-
multaneously exhibit extraordinary spatial confinement λ0=λp ∼ 105
and high quality factor (Q ∼ 360), consistent with the experimental
observations (16). Intererstingly, the simultaneous high spatial con-
finement and quality factor can be also achieved in terahertz DIPs,
such as λ0=λp ∼ 13(  66), Q ∼ 15  (67) for plasmon in Ca2As (CNT)
at 3 (10) THz. As shown in Fig. 5C, the performance (λ0=λp and τp)
of graphene plasmons can be greatly affected by the charge doping,
which is also demonstrated in a recent experiment (18). However, for
terahertz DIPs, these figures of merit are robust against the change of
n (Fig. 5C), revealing that the n-independent feature of DIPs also
benefits their device performance.

Discussion
For 2D NLSMs, some of them have been synthesized on metal
substrates (33, 34, 37). Although the mirror reflection symmetry
is broken considering the different media of vacuum and sub-
strate, the nodal lines survive due to the weak substrate–overlayer
interactions (37). Because of the significantly different excitation
regions of ωp in these NLSMs (terahertz) and their metal sub-
strates (UV), we expect that the novel DIPs are ready to be de-
tected in the experiments. It is also expected that they can further
be deposited on insulating substrates (such as SiO2/Si or BN) by
the transfer technique (42) for better optical measurements,
where near-field optical microscope (16, 27) or lithography and
etching technologies (14) may need to be adopted. Meanwhile,
some other 2D NLSMs are expected to be synthesized or ex-
foliated from their bulk materials. For 1D nodal point TSMs,

the large-scale, high-quality CNTs can be synthesized in the
experiments (45).
It is noted that although some metallic 2D materials [e.g., TaS2

(46, 47)] may also have nearly linear band dispersion around EF,
the DOS is still nonconstant, making their plasmons n dependent
(SI Appendix, Fig. S14). It is also highlighted that all the theories
and models are based on the RPA and long-wavelength limit,
beyond which the features of DIPs may no longer exist (SI Ap-
pendix, Fig. S15). In addition, although for conventional metals
with a sizeable equilibrium n, their plasmon can also demonstrate a
weak n dependence due to the relatively small change of n in re-
ality, this situation is not included in our unified mechanism for
realizing DIP, since for the terahertz plasmons, the realistic change
of n can be comparable to equilibrium n (SI Appendix, section X).
Our study has significant impacts in multiple fields. First, a

unified model or general form of plasmon frequency (Eq. 2) for
all electronic systems in different dimensions is derived, which could
capture the most fundamental features of plasmons. Importantly, a
universal mechanism for realizing a DIP is devised, shedding im-
portant insights in understanding the DIPs excited in the 2D nodal
line systems as well as 3D nodal-surface (28) and 1D nodal-point
(27, 44, 48) systems. Second, new terahertz metamaterials based on
a large number of TSMs are designed to achieve a terahertz-stable
spectroscopy from narrowband to broadband or a quantized ma-
nipulation of terahertz frequencies. All these results, together with
simultaneous high spatial confinement and quality factor for ter-
ahertz DIPs, can be ready to be applied in compact terahertz de-
vices with high stability and precision, such as ultrastable signal
amplification and accurate detection. Therefore, our work paves the
way to developing exotic plasmonic applications in nanophotonic
and nanophotoelectric devices, which may potentially open a field
for terahertz-stable plasmonics and related technologies.

Methods
First-Principles Calculations. The first-principles calculations are performed
using the Vienna ab initio simulation package (49) within the projector
augmented wave method (50) and the generalized gradient approximation
of the Perdew–Burke–Ernzerhof (51) exchange-correlation functional. The Г-
centered k-point meshes are adopted. Fixing the crystal symmetry, the
structures from experiments or literatures are relaxed until the residual
forces on each atom is less than 0.01 eV/Å. The thickness of vacuum is taken
to be 18 Å, which is adequate to simulate 2D or 1D materials. Cu2Si has a
lattice constant of 4.123 Å, and the crystal structures of other materials can
be found in SI Appendix. SOC is also considered in part of our calculations. A
tight-binding (TB) Hamiltonian based on the maximally localized Wannier
functions (MLWF) (52) is constructed to get the energy eigenvalues and
eigenstates for further dielectric function calculations.

Plasmon Calculations. The plasmon excitation can be determined by

e q,ω( ) = 1 − V q( )Π q,ω( ) = 0  , [4]

where e(q,ω), a function of the wave vector q and frequency ω, is the dy-
namical dielectric function. V(q) is the D-dimensional Coulomb interaction in
the wave vector space (26):

V q( ) =
⎧⎨⎩

4πe2/κq2, D = 3( )
2πe2/κq, D = 2( )

2e2|ln qa( )|/κ. D = 1( )  .
[5]

κ = 4πe0er is the background dielectric constant, where e0 and er are the
vacuum and background relative dielectric constants, respectively. Π(q,ω) is
the irreducible polarizability function. Under RPA and long-wavelength limit
(q→ 0), the plasmon frequency in a D-dimensional electron system can be
determined by a noninteracting irreducible polarizability (26, 28),

Π q,ω( ) = g

2π( )D∫ d
Dk∑

l, l’

nF Ek,l( ) − nF Ek+q,l’( )
Zω + Ek,l − Ek+q,l’ + iη

Fll’ k,q( )  , [6]

in which nF is the Fermi–Dirac distribution function, and Fll’ (k,q) is the

overlap form factor
⃒⃒
Æk + q, l’|eiq·r |k, læ

⃒⃒2
with |k, læ and Ek,l, the eigenstate and

A

B

Fig. 3. DIPs in 2D NLSM metamaterials for ultrastable and broadband ter-
ahertz spectroscopy. (A) Plasmon frequency as a function of gk0vF for 22 2D
NLSMs, where q = 0.0001 Å−1 and SiO2/Si substrate are adopted (Methods).
The 22 colored points: numerical results obtained from first principles; black
curve: analytical results obtained from Formula 3.7 in Table 1. (B) vdW het-
erostructures or grating superlattice of 2D NLSMs for ultrastable terahertz
spectroscopy. For grating superlattice, transparent substrates are needed.
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energy dispersion, respectively. The factor g in Eq. 6 is the degeneracy factor,
including degeneracies of spin, valley, and conducting channel, and η is re-
lated to the electron lifetime due to the damping. The zeros of complex
dielectric function signify a self-sustaining collective mode and give the
plasmon frequency.
Numerical calculations. The energy eigenvalues and eigenstates in Eq. 6 are
obtained from the TB Hamiltonian of MLWF. The integral is over the first BZ,
where a temperature of 300 K in the Fermi–Dirac distribution function and
an infinitesimal broadening η = 1meV are used. Considering the spin degree

of freedom, the degeneracy factor g is set to 2 in the numerical calculations
of all systems, while in theoretically derived formula in Table 1, g should be
adopted as 4 for Cu2Si, CuSe, and AgTe because of the two nodal lines in
these three TSMs and 4 (6) for double-walled nanotubes (triple-walled
nanotubes). For V(q), the relative dielectric constant is determined by
er = (e0 + esub)=2 for 2D and 1D systems, representing the effective dielectric
function of environments (vacuum and substrate). For a SiO2/Si substrate,
er = 5 (14); for a BN substrate, er = 1 (27). In the 1D Coulomb interaction, a is
the lateral confinement size of a 1D electron system (e.g., the diameter of

A B

DC

Fig. 4. Terahertz DIPs in 1D metallic CNTs and their quantization. (A) EELS as a function of frequency and wave vector. The white dashed line denotes the
upper edge ZvFq of intraband particle-hole continuum. (Inset) EELS at a large scale of wave vector. Red triangles: experimental data adopted from ref. 27. (B)
EELS as a function of frequency and Fermi energy for two different single-, (5, 5)-@-(10, 10) double-, and (5, 5)-@-(10, 10)-@-(15, 15) triple-walled nanotubes
(q = 0.0001 Å−1). Red dashed lines: analytical results from Formula 3.9 in Table 1. (C) A quantized DIP frequency as a function of the number of walls (Nw) in
MWNT. (D) Schematic plot of 1D MWNT metamaterial for an ultrastable terahertz spectroscopy with tunable and quantized frequencies.
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Fig. 5. Spatial confinement and lifetime of DIPs. (A) Spatial confinement (λ0=λp) as a function of ωp for Ca2As, (5, 5) CNT, and graphene. The dashed lines are
theoretically derived λ0=λp for the three systems (SI Appendix, section VII). EF = 0.27 eV is adopted for graphene in order to compare with experiment (16). (B)
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fixed at 3, 10, and 30 THz for Ca2As, CNT, and graphene, respectively.
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nanotubes). When studying the density dependence of plasmon, we have
fixed the wave vector as q = 0.0001 Å−1, which corresponds to a typical
micrometer wavelength easily available in experiments (14).

The collective plasmon mode is defined at zeros of Eq. 4. In general, the
dielectric function is a complex functional. The complex solution at
e(q,ω) = 0 gives both the plasmon dispersion (real part) and the decay of the
plasmon (imaginary part). In order to compare with the experiments, it is
more convenient to calculate the EELS, whose broadened peaks indicate the
plasmons (28);

EELS = −Im 1=e q,ω( )[ ]  . [7]

Analytical derivations. In the analytical derivations of ωp, only the intraband
excitations are considered. E(k) = Z2k2=2m and E(k) = ZvFk are employed for
conventional EGs and TSMs, respectively. The overlap form factor is
F(k,q) = 1, and a Fermi–Dirac distribution function with 0 K is adopted. The
detailed derivations for all systems are shown in SI Appendix. The final re-
sults are summarized in the right column of Table 1. In comparison with the
results of numerical calculations, the degeneracy factor g should be adopted
as 4 for Cu2Si, CuSe, and AgTe because of the two nodal lines in these three
TSMs, 4 (6) for double-walled nanotubes (triple-walled nanotubes), and 2 for
other materials.

Calculations of Plasmon Lifetime. The phonon-assisted damping rate of
plasmons is only considered due to the forbidden or weak direct Landau
damping in the studied systems at a long-wavelength limit. The plasmon
lifetime can be determined from the alternating current conductivity, which
is related to the transport relaxation time (τtr) (53). The transport scattering
rate can be written as (53)

1
τtr

= 2π
ω

∫ ω
0dω

’ ω − ω’( )α2trF ω’( )  . [8]

α2trF is a transport related Eliashberg spectral function, and it is defined as

α2trF ω( ) = 1
2NF

∑
kqν

|gν k,q( )|2 −q · k
k2( )δ «k − «F( )δ «k+q − «F( )δ ω − ωqν( )  . [9]

where gν(k,q) is the electron–phonon (e-ph) matrix element. It quantifies a
scattering process from an initial Bloch state |nkæ (with band n and mo-
mentum k) to a final state |mk + qæ by emitting or absorbing a phonon with
wavevector q, mode index ν, and frequency ωνq,

gnmν k,q( ) = 1̅̅̅̅̅̅̅̅̅̅
2ωνq

√ Æmk + q|∂qνV |nkæ  , [10]

where ∂qνV is the derivative of the self-consistent potential.
The e-ph coupling matrix elements can be computed within the density-

functional perturbation theory. Here, a Wannier–Fourier interpolation
method, as implemented in the EPW (electron–phonon coupling using
Wannier functions) code (54) and integrated in the Quantum ESPRESSO
package (55), is used to obtain the numerical results of e-ph coupling. The
electron eigenstate and eigenvalue vibrational modes and frequencies as
well as e-ph matrix elements that are first calculated on a relatively coarse
BZ grid and then Wannier-interpolated values on a fine grid are obtained.

Data Availability.All study data are included in the article and/or SI Appendix.
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