Interface orbital engineering of large-gap topological states: Decorating gold on a Si(111) surface

Bing Huang,1,2,4 Kyung-Hwan Jin,2 Houlong L. Zhuang,3 Lizhi Zhang,2 and Feng Liu2,4,†
1Beijing Computational Science Research Center, Beijing 100193, China
2Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
3Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
4Collaborative Innovation Center of Quantum Matter, Beijing 100084, China

(Rceived 1 November 2015; revised manuscript received 28 January 2016; published 9 March 2016)

Intensive effort has recently been made in search of topological insulators (TIs) that have great potential in spintronics applications. In this paper, a novel concept of overlayer induced interfacial TI phase in conventional semiconductor surface is proposed. The first-principles calculations demonstrate that a p-band-element X (X = In, Bi, and Pb) decorated d-band surface, such as Au/Si(111) surface [X/Au/Si(111)] of an existing experimental system, offers a promising prototype for TIs. Specifically, Bi/Au/Si(111) and Pb/Au/Si(111) are identified to be large-gap TIs. A p-d band inversion mechanism induced by growth of X in the Au/Si(111) surface is revealed to function at different coverage of X with different lattice symmetries, suggesting a general approach of interface orbital engineering of large-gap TIs via tuning the interfacial atomic orbital position of X relative to Au.

DOI: 10.1103/PhysRevB.93.115117

One recent breakthrough in condensed matter physics is topological insulators (TIs) [1,2]. A strong spin-orbital coupling (SOC) interaction associated with nontrivial band inversion can convert a trivial insulating phase into a nontrivial topological insulating phase, in which gapless two-dimensional (2D) surface or one-dimensional (1D) edge states exist inside the bulk band gap of an insulator. A large number of 2D and three-dimensional (3D) TI candidates have been theoretically proposed. To date, several large-gap 3D TIs, e.g., Bi2Se3, Bi2Te3, and Sb2Te3 [3–5], have been experimentally confirmed, while two 2D TIs have been shown experimentally in HgTe/CdTe [6,7] and InAs/GaSb [8] quantum wells, but their existence inside the bulk band gap of an insulator. A large number of 2D and three-dimensional (3D) TI candidates have been theoretically proposed. To date, several large-gap 3D TIs, e.g., Bi2Se3, Bi2Te3, and Sb2Te3 [3–5], have been experimentally confirmed, while two 2D TIs have been shown experimentally in HgTe/CdTe [6,7] and InAs/GaSb [8] quantum wells, but having too small a gap.

Besides the fact that most theoretically predicted large-gap 2D TIs are metastable, another important reason that makes them difficult for experimental realization is the inevitable substrate effect, which will often alter the intrinsic TI properties [9–12]. In this paper, we investigate an alternative idea to design large-gap interfacial TIs on a semiconductor surface via controlling the orbital alignment between the predesigned overlayer elements and the given surface elements. Our motivation is twofold. First, we focus on experimentally feasible systems based on existing experimental results, especially the well-known growth of heavy metal atoms on semiconductor substrates. Second, we aim at revealing new physical mechanisms to generate TI phases on a surface, which will be generally applicable. To this end, we will illustrate a new concept of “interface orbital engineering” of large-gap TI phases on a substrate through adjusting the atomic orbital coupling between the overlayer atoms and substrate surface atoms.

Growth of metal atoms on Si surfaces has already attracted much interest, e.g., for Rashba spin splitting effect or superconductivity [13–20]. Among the variety of metal-atom induced reconstruction on Si(111) surface, the Au/Si(111) with $\sqrt{3}\times \sqrt{3}$ reconstruction is most well known [17–23]. In this structure, the arrangement of surface Au atoms can be described by the conjugate honeycomb-chained-trimer (CHCT) model [24]. As shown in Fig. 1(a), there is a missing top Si layer on the perfect $(\sqrt{3}\times \sqrt{3})$-Si(111) surface and one additional monolayer of Au atoms sitting on top of the Si surface. The three Au (Si) atoms in the unit cell form a trimer structure.

Both theory and experiment confirm that there is a parabol-like surface state, mostly contributed by the Au p-orbital energies are higher than the Au d-orbital energies [17–22]. On Au/Si(111) surface, there are three nonequivalent high-symmetry adsorption sites for metal atom [18]. Among the variety of metal-atom induced reconstruction on Si(111) surface, the Au/Si(111) with $\sqrt{3}\times \sqrt{3}$ reconstruction is most well known [17–23].

The Au/Si(111) surface has been experimentally shown to be a suitable template for epitaxial growth of metal-atom overlayers. For example, Na, Cs, In, and Ti monolayer structures have been grown on Au/Si(111) surface with different domain sizes [21–23]. Based on our design principle [Fig. 1(d)], we first consider In and Ti as the overlayer element X, because their p orbital energies are higher than the Au d orbital energy (-2.78 eV for In $5p$, -2.66 eV for Ti $6p$, and -7.14 eV for Au $5d$). On Au/Si(111) surface, there are three nonequivalent high-symmetry adsorption sites for metal atom X, as shown in Fig. 1(a). Site I (II) represents the hollow site of Si (Au) trimer, while site III represents the top site of Si atom between two
Au trimers. Our calculations show that the adsorption energy of In (TI) at site I is 0.39 (0.37) and 0.38 (0.35) eV lower than that of site II and site III, respectively. There is no surprise that the stability of In and TI on Au/Si(111) is almost the same, as In and TI have the same number of valence electron/atomic size. If we assume the site I on the surface can be fully (half) occupied, then $\frac{3}{\sqrt{2}}$ ML (4 ML) coverage of In/TI atoms can form a hexagonal (triangular) lattice, as shown in Fig. 1(b) [Fig. 1(c)]. Indeed, the hexagonal-like In and TI lattices on Au/Si(111) surface have been observed in scanning tunneling microscopy measurements [21–23].

Let us now examine the electronic structure of $\frac{3}{\sqrt{2}}$ ML X on Au/Si(111) [Fig. 1(b)] with hexagonal X lattice. The calculated band structure of In/Au/Si(111) without SOC is shown in Fig. 2(a) (left panel). As seen from the projected band structure, the bands around Fermi level are mostly contributed by the Au d orbitals and In p orbitals. The crossing between the p and d states gives rise to a Dirac point (marked as Δ_2) at the Fermi level along the Γ–K line of the Brillouin zone. The atomic orbital alignment between In p and Au $5d$ gives rise to a p-d band inversion across the Fermi level, consistent with our design principle [Fig. 1(e)] and suggesting a possible nontrivial band topology [7]. Furthermore, the p-d coupling opens a local anticrossing band gap of 0.11 eV around the M point (marked Δ_1), which is called interface hybridization charge (IHC) gap since it is induced by charge localization associated with interface orbital hybridization. When SOC effect is considered, SOC lifts the degeneracy of Dirac point and opens a local SOC gap of 0.07 eV at Δ_2 [Fig. 2(a), right panel]. Meanwhile, the surface Rashba effect splits the band degeneracy in the presence of SOC, which can be more clearly seen along the $M-\Gamma$ line of the Brillouin zone [Fig. 2(a), right panel]. Specifically, the band splitting of the bottom conduction band and top valence band along the $M-\Gamma$ line significantly reduces the IHC gap at Δ_1 to 0.01 eV.

To better understand the SOC effect, we have artificially increased the strength of SOC λ_{so} from 0 to its full value 1 in the calculation and monitor the evolution of band structure. As shown in Fig. 2(b), when λ_{so} is increased, the IHC gap at Δ_1 decreases monotonically, while the SOC gap at Δ_2 increases monotonically. Finally, the local conduction band minimum at Δ_1 and the local valence band maximum at Δ_2 almost merge, resulting in a ~5 meV global band gap (enlarged to 36 meV under HSE calculations). Moreover, the calculated topological Z_2 invariant is 1 in In/Au/Si(111), confirming its nontrivial TI phase.

The electronic structure of $\frac{3}{\sqrt{2}}$ ML Ti/Au/Si(111) is almost the same as that of In/Au/Si(111) [25]. However, a significant difference has been found when we evaluate the evolution of Δ_1 vs Δ_2 as a function of λ_{so}. As shown in Fig. 2(c), Δ_1 monotonically decreases when $0 < \lambda_{so} < 0.8$, but it closes at $\lambda_{so} = 0.8$ and reopens again for $\lambda_{so} > 0.8$. This additional band inversion around the M point happens to convert Ti/Au/Si(111) from a TI to a trivial insulator. An even (odd) number of band inversions indicates a trivial (nontrivial) insulator. The calculated Z_2 invariant is confirmed to be 0 [25].

The above study shows that although there exists a nontrivial p-d band inversion across the Fermi level, the surface Rashba effect can close or even reopen the original small IHC gap Δ_1 and eventually results in either a tiny nontrivial TI gap in In/Au/Si(111) or an even trivial gap in Ti/Au/Si(111). In order to realize a large-gap TI phase in X/Au/Si(111), a sufficient large Δ_1 gap is desired by carefully selecting new p-band-element X. As the size of Δ_1 is mostly determined by
the interfacial p-d coupling strength, a suitable X must have a much stronger p_X-d_{Au} coupling strength than that of In/Tl. Ideally, the strength of p_X-d_{Au} coupling largely depends on the energy level proximity between d_{Au} orbitals and p_X orbitals, i.e., the closer these two energy levels are, the stronger the p-d coupling will be. Also, since the deposition of In/Tl atoms on $Au/Si(111)$ has been proved experimentally, we focus on new X candidates having similar valence p electrons and atomic sizes as In and Tl, in order to have similar stability. Thus, we have examined Pd, Sn, Bi and Sb atoms. As shown in Fig. 3(a), compared to the energy levels of In $5p$ ($−2.78$ eV) and Tl $6p$ ($−2.66$ eV), the Pd $6p$ ($−3.79$ eV), Sn $5p$ ($−3.96$ eV), Bi $6p$ ($−4.86$ eV), and Sb $5p$ ($−5.08$ eV) levels are closer to the energy level of the Au $5d$ orbital ($−7.14$ eV). The selected X candidates also have a close number of electrons compared to In/Tl. Moreover, the atomic sizes of Pd, Sn, Bi, and Sb are all similar to those of In and Tl.

We have calculated the adsorption energies of these X candidates on $Au/Si(111)$ surface, and indeed they are (at least) as stable as that of In and Tl on $Au/Si(111)$ surface. The adsorption energy of a Bi (Pb) atom at site I is 0.64 and 0.57 (0.77 and 0.85) eV lower than that at site II and site III, respectively. It is therefore reasonable to expect that Bi and Pb might also been grown on $Au/Si(111)$ surface as In/Au/Si(111). The stability of Sn/Sb on $Au/Si(111)$ surface is also similar to that of the Pb/Bi cases (not shown here).

For the $\frac{2}{3}$ ML Bi/Au/Si(111) system, as shown in Fig. 3(b), the size of IHC gap Δ_1 is remarkably increased to 0.43 eV (without SOC), which is more than twice larger than that in the In and Tl systems (<0.2 eV), consistent with our initial reasoning. As λ_{so} increases, the size of Δ_1 is gradually decreased to 0.24 eV, and meanwhile the SOC gap Δ_2 is gradually increased to 0.18 eV [Fig. 3(d)]. The global band gap for this system is 0.15 (0.28) eV under Perdew-Burke-Ernzerhof (PBE) [Heyd-Scuseria-Ernzerhof (HSE)] calculations. The calculated Z_2 invariant is 1 in Bi/Au/Si(111), confirming its nontrivial TI phase [25]. As another hallmark of 2D TI is the existence of gapless helical edge states inside the bulk band gap, we have also calculated the topological edge states by constructing the edge Green’s function of a semi-infinite Bi/Au/Si(111) surface. The local density of states of the zigzag edge is shown in Fig. 3(e), which shows that the gapless edge states, connecting the upper and lower bulk band edges and forming a 1D Dirac cone at the Brillouin zone boundary, are characterized by an odd number of crossings over the Fermi level, indicative of their topological protection. We note that the mechanism for creating TI phase in the Bi/Au/Si(111) system is totally different from the previously reported orbital filtering mechanism in the Bi/Cd/Si(111) system [26].

The situation of $\frac{2}{3}$ ML Pb/Au/Si(111) is similar to that of Bi/Au/Si(111), except that it is a p-type-like TI system, as shown in Fig. 3(c). The strong p-d coupling strength gives rise to a sufficiently large TI gap of 0.18 (0.39) eV [shadow zone in Fig. 3(e)] above Fermi level under PBE (HSE) calculations [25]. The calculated Z_2 invariant is 1 when the Fermi level is artificially moved into the SOC gap. In practice, the Fermi level of Si substrate can be readily tuned by gating with standard techniques. For the cases of $\frac{2}{3}$ ML Sn/Au/Si(111) and $\frac{3}{4}$ ML Sb/Au/Si(111), although the size of IHC gap Δ_1 can be enhanced according to our design principle, the lack of a global TI gap in these systems makes them less interesting and are not discussed here.

Next, we demonstrate that overlayer X induced nontrivial p-d band inversion in the $X/Au/Si(111)$ system can also exist at a lower X coverage, e.g., $\frac{1}{4}$ ML X with trigonal symmetry [Fig. 1(c)]. This could be practically even more important because it may be difficult for experiment to choose one coverage [21,23]. Our calculations show that although all the
FIG. 4. The electronic band structure of $\frac{1}{3}$ ML Bi/Au/Si(111) without and with SOC. The line labels are the same as Fig. 2.

$\frac{1}{3}$ ML In, Tl, Bi, and Pb overlayers can induce a p-d band inversion, only Bi and Pb overlayer induced band inversions are topologically nontrivial ($Z_2 = 1$). As shown in Fig. 4, $\frac{1}{3}$ ML Bi/Au/Si(111) surface has a p-d band crossing (Dirac) point at ~ 0.1 eV below the Fermi level and the SOC effect can lift this degeneracy and induce a global 0.13 (0.25) eV gap from PBE (HSE) calculations. Similarly, the $\frac{1}{2}$ ML Pb/Au/Si(111) system can also host an intrinsic 0.02 (0.05) eV gap around the Fermi level [25]. Also, it is not straightforward to directly compare the band structures of $\frac{2}{3}$ ML and $\frac{1}{2}$ ML Bi/Au/Si(111) in detail, as they have a different number of Bi atoms (i.e., electronic bands) and different lattice symmetry. But we can clearly see the band inversion between the Bi and Au states in both band structures, which is the key for the realization of TI phase. Therefore, these calculations demonstrate that the p-band-element overlayer induced nontrivial p-d inversion on d-band Au/Si(111) in general may occur at different coverage of X in different lattice symmetries, significantly easing the way for experimental realization.

In summary, we have systemically investigated the mechanism of p-band-metal overlayer induced TI phase in d-band Au/Si(111) surface (Table I). Broadly, our findings may be extended to the search for new 2D TI materials including magnetic TI phases for quantum anomalous Hall effect on other conventional semiconductor surfaces with overlayer induced nontrivial band inversion.

The research at Utah was supported by US Department of Energy (Grant No. DE-FG02-04ER46148). B.H. acknowledges the support from Chinese Youth 1000 Talents Program and NSFC (Grant No. 1157041396). Computations were performed at DOE-NERSC and CHPC of University of Utah.

TABLE I. The topological invariant Z_2 and band gap E_g of X/Au/Si(111) ($X = \text{In}, \text{Tl}, \text{Bi}, \text{and Pb}$) at $\frac{1}{3}$ ML and $\frac{1}{2}$ ML X coverage. The HSE band gap is listed in parentheses. It is noted that $\frac{1}{2}$ ML Pb/Au/Si(111) and $\frac{1}{3}$ ML In/Au/Si(111) are p-type semiconductors, while $\frac{1}{3}$ ML Bi/Au/Si(111) is n type.

<table>
<thead>
<tr>
<th>$\frac{1}{3}$ ML</th>
<th>Z_2</th>
<th>E_g (eV)</th>
<th>$\frac{1}{2}$ ML</th>
<th>Z_2</th>
<th>E_g (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In</td>
<td>1</td>
<td>0.005 (0.036)</td>
<td>In</td>
<td>0</td>
<td>0.052 (0.112)</td>
</tr>
<tr>
<td>Tl</td>
<td>0</td>
<td>0.047 (0.068)</td>
<td>Tl</td>
<td>0</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Bi</td>
<td>1</td>
<td>0.146 (0.276)</td>
<td>Bi</td>
<td>1</td>
<td>0.125 (0.254)</td>
</tr>
<tr>
<td>Pb</td>
<td>1</td>
<td>0.182 (0.391)</td>
<td>Pb</td>
<td>1</td>
<td>0.022 (0.046)</td>
</tr>
</tbody>
</table>

