
PHYSICAL REVIEW B 109, 054102 (2024)

Negative interatomic spring constant manifested by topological phonon flat band
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Phonons as bosons are different from electrons as fermions. Unlike interatomic electron hopping that can be
either positive or negative and further tuned by spin-orbit coupling, interatomic spring constant is positive, or
the structure of atomic lattices would be dynamically unstable. Surprisingly, we found that topological phonon
flat bands (FBs) can manifest either a positive or negative interatomic spring constant that couples the FB
modes of opposite chirality, as exemplified by first-principles calculations of a 2D material of kagome boron
nitride (BN). To reveal its physical origin, we first establish a fundamental correspondence between a collective
lattice-coupling (CLC) variable of two quasiparticle states (e.g., electronic states or phonon modes) of opposite
parity in a periodic lattice with band topology. Topological Dirac bands corresponds to a zero CLC at specific
k points (Dirac point) and topological gap of inverted bands corresponds to a negative CLC at a specific k
point, respectively. Then, we show topological FB has a special form of CLC that vanishes at all k points
as characterized by its real-space wave function, and multiatom FB phonon mode can manifest effectively a
negative interatomic spring constant. Our findings shed light on our fundamental understanding of topology and
provide a practical design principle for creating topological states.

DOI: 10.1103/PhysRevB.109.054102

I. INTRODUCTION

In crystalline solids, quasiparticle transport as described in
lattice models is mediated by interatomic coupling constants
in a periodic lattice, which can be different for fermionic
electrons from bosonic phonons. Interatomic electron hopping
of different valence orbitals can be either positive or negative;
a negative hopping integral (−t = teiπ ) implies that the Bloch
electrons acquire a phase of π as they hop over the periodic
lattice. Also, the complex spin-orbit coupling (SOC) hopping
term carries a phase, which is the key ingredient to open
a topological band gap. In contrast, the interatomic spring
constant coupling the atomic vibration modes can only be
positive; otherwise, the atomic structure would be dynami-
cally unstable. This fundamental difference is evident from
the observation that the sign of electron eigenvalues can be

negative or positive, relative to the position of Fermi level,
while all phonon eigenfrequencies must be positive. Also,
phonon is spinless, lacking SOC to tune the phase of spring
constant.

Let us further illustrate the difference between interatomic
electron-hopping parameter and spring constant, in the con-
text of topological flat band (FB). We take kagome lattice
[Fig. 1(a)] as an example which is well known to host FB
[1–3]. A positive and negative electron hopping (t) leads to
a FB of opposite chirality sitting above and below the Dirac
bands [4,5], respectively, as shown in Figs. 1(b) and 1(c). Now
we examine a phononic kagome lattice [Fig. 1(d)], where each
lattice site is bonded with four nearest-neighbor (NN) sites.
The out-of-plane z-mode (in-plane modes to be shown later)
phonon dynamical matrix is given in Eq. (1a) (see Methods
section of Supplemental Material (SM) [6]):
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In deriving Eq. (1a), without losing generality, we set atomic mass MA,B,C = 1, lattice constant a = 1 and interatomic spring
constant k f = 1 (superscript f is used to distinguish k f from momentum k). Note that while k f must be positive, the elements of
force constant matrix or dynamic matrix can have different signs and further varies with k (see detailed discussion in Methods
section of SM [6]).
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FIG. 1. Illustration of electron (phonon) FB with positive vs
negative interatomic hopping (spring constant). (a) The electronic
kagome lattice with hopping t . (c) The electron band structure for
t < 0. (d) Spring-mass model for kagome lattice with out-of-plane
z-mode spring constant k f . (e) The phonon spectra for k f > 0.
(f) The phonon spectra for k f < 0.

The phonon bands are shown in Fig. 1(e) having a FB,
similar to the electronic FB [Fig. 1(b)]. For comparison, we
give the electronic tight-binding Hamiltonian H for pz orbitals
in a kagome lattice in Eq. (1b). The two matrices are the same
except for different diagonal elements, so that their eigenspec-
tra are similar, as shown in Figs. 1(b) and 1(e) for positive
t and k f , and Figs. 1(c) and 1(f) for negative t and k f (to
be assumed and discussed below), respectively. This analogy
shows that in principle propagation of z-mode vibrations can
be qualitatively understood as hopping of electron pz states in
a lattice.

However, two fundamental differences are to be noticed.
First, the diagonal elements of H represent on-site energies,
which can be set positive or negative in accordance with
eigenvalues relative to the Fermi energy. In contrast, the diag-
onal elements of D represent the number of NN interatomic
springs (4 in the present case), and the eigenfrequency is
positive (tending to zero at � for acoustic phonon). Second,
the atomic valence orbitals can have s, p, d, and f symmetries
whose NN hopping integrals [t in Eq. (1b) ] can be either
positive or negative. Correspondingly, the position of elec-
tronic FB can be either above [Fig. 1(b)] or below [Fig. 1(c)]
the Dirac bands for +t or −t , respectively [4,5]. In contrast,
the atomic vibrational modes have p symmetry and the inter-
atomic spring constant [ k f in Eq. (1a) ] can only be positive. If
one artificially assumed a negative k f , one would get a phonon
band structure as shown in Fig. 1(f), which has the FB below
the Dirac bands as expected, but all the vibration frequencies
would be negative (imaginary). This is unphysical. It seems
that in a kagome lattice, phononic FB should always sit above
the Dirac bands.

Surprisingly, we found that a phonon FB that sits below
the Dirac bands, manifesting a negative k f , does exist in
real materials such as kagome-BN [Fig. 2(a)], as shown in
Fig. 2(b), from density-functional theory (DFT) calculations
(see Methods in SM [6]). Kagome-BN was previously studied
for its electronic bands [7], where its phonon spectrum was
also calculated to confirm its stability. In Fig. 2(b), there are
two sets of kagome phonon FBs sitting under Dirac bands
in the optical branches between 25 and 50 THz. Hypotheti-
cally, one could fit them separately as if they arose from two

FIG. 2. Demonstration of negative interatomic spring constant
manifested by phonon FB in kagome-BN. (a) The structure of 2D
kagome-BN; B and N atoms are denoted by green and gray spheres,
respectively. (b) The DFT calculated phonon spectra for kagome-BN.
(c) The compact localized state of kagome FB. (d)The compari-
son between model (blue dashed lines) and DFT (red solid line)
results for two subsets of kagome bands manifesting a negative
interatomic spring constant. (e) In-plane phonon bands with four
atoms on each kagome lattice site to model kagome-BN. We note
that there are total 24 bands, but only 15 are visible, because there is
a nonuple-degenerate flat band at zero frequency, as indicated. They
are so-called floppy modes [37], which appear when the number
of spring constraints is less than the number of vibrational degrees
of freedom. Here, we considered only the in-plane stretching but
not bending restoring force for springs, leading to the floppy bend-
ing modes with zero frequency, which can be stabilized at finite
frequency by adding a weak bending restoring force. (f) The eigen-
modes at � for band marked by red dashed circle in (e).

kagome lattices with one atom per lattice site [assuming 1
atomic mass unit (amu) for atoms]. Then, one would obtain
an on-site single-atom mode frequency of 30.5 and 41.1 THz,
respectively, with a negative k f = −2882 N/m.

To reveal its physical origin, we came to realize that first,
one has to consider multiatom cluster-mode vibrations, be-
cause the single-atom vibration modes cannot have a negative
k f . Second, the negative (or sign of) k f is likely related to
phonon topology, because it is known that two electronic FBs
arising from different sign of t [Figs. 1(b) and 1(c)] have
opposite chirality, i.e., they have opposite Chern number if
SOC is added and time-reversal symmetry is broken [2,5,8].
This points to an analogous correlation between the sign of
k f [Figs. 1(e) and 1(f)] and phonon FB chirality. Therefore,
to resolve a negative k f , one needs to further understand
the relationship between the multiatom phonon modes and
phonon topology, especially the FB topology. In this pa-
per, we establish a fundamental correspondence between a
collective lattice-coupling (CLC) variable of two quasiparti-
cle states of opposite parity in a periodic lattice with band
topology, which underlines generally the formation of three
classes of topological bands (Dirac bands, inverted band gap,
and FB) [9]. Then, we show that topological FB has a spe-
cial form of CLC that vanishes at all the k points in the
whole Brillouin zone (BZ), which can be characterized by
its real-space wave function and topology, and demonstrate
that only the multiatom topological phonon FB can manifest a
negative k f .
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FIG. 3. Illustration of electron (phonon) band topology in
correspondence with positive vs negative CLC in SSH model.
(a) Electronic SSH model. The red dashed lines mark the unit cell.
(b) Band structure for TA−B > 0 (t1 > t2). The even (odd) parity of
band is marked by red (blue) color. (c) Band structure for TA−B <

0 (t1 < t2). (d) Phononic SSH model. (e) The phonon spectra for
K f

A−B > 0 (k f
1 > k f

2 ). (f) The phonon spectra for K f
A−B < 0 (k f

1 < k f
2 ).

(g) The eigenmodes at �. (h) The eigenmodes at X for K f
A−B > 0. (i)

The eigenmodes at X for K f
A−B < 0.

II. RESULTS AND DISCUSSION

A. Recast 1D Su-Schrieffer-Heeger model with collective
lattice-coupling variable

We will use electrons and phonons as examples to establish
the CLC-topology correspondence. Let us briefly review the
band topology induced by band inversion using the well-
known 1D Su-Schrieffer-Heeger (SSH) model as shown in
Figs. 3(a)–3(c). Let t1 (t2) be the intracell (intercell) inter-
atomic hopping as shown in Fig. 3(a). The intracell hopping
t1 defines an “on-site” level splitting within the unit cell of
two electron states of opposite parity (odd-even), namely the
initial energy order of two quantum states before hopping. The
effect of intercell hopping t2 is to change the level splitting at
k (i.e., band dispersion) as these two states hop in the lattice
periodically from cell to cell. In other words, it determines the
final energy order of the two quantum states as a function of
momentum. Especially, at the BZ boundary (ka = ±π , a is
lattice constant), the level splitting becomes t1 − t2. If t1 > t2,
the order of level splitting and hence the phase of the two
quantum states is unchanged as they hop over the lattice; then,
the system is topological trivial [Fig. 3(b)]. If t1 < t2, the order
of level splitting is reversed (band inversion) and the system
becomes topological nontrivial [Fig. 3(c)]. This observation
invoked us to introduce a variable of CLC between two states
sitting on A and B sublattices, respectively, within a unit cell
for electron hopping, defined as TA→B = t1 + t2e−ika, where t2
terms include both intercell hopping and structure factor, to
capture the phase evolution of the two states (|A〉) ± |B〉/√2
over the BZ. At the BZ boundary, TA→B = t1 − t2, whose
sign defines the band topology: a positive (negative) TA→B

corresponds to a trivial (nontrivial) band gap, as shown in
Fig. 3(b) [Fig. 3(c)]. More generally, we can express TA→B =

∑
tintra + ∑

tinter, where tintra and tinter represent, respectively,
the intracell and intercell hoppings from state A to state B in
any given lattice.

An analog of phononic SSH model can be constructed, as
shown in Figs. 3(d)–3(f). Similarly, we define a CLC of force
constants coupling sublattice A and B, K f

A→B = k f
1 + k f

2 e−ika,
which accounts for interatomic spring constants (always pos-
itive) and structure factor, as well as directional cosines for
in-plane modes (see Methods in SM [6]). At the BZ boundary
(X point), K f

A→B = k f
1 −k f

2 . Then, if K f
A→B > 0, the phonon

bands are trivial [Fig. 3(e)]; if K f
A→B < 0, they are nontrivial

[Fig. 3(f)]. To better understand this, we examine the eigen-
modes at � and X. At � [Fig. 3(g)], the eigenmodes have
one acoustic branch at the bottom (even parity) and another
optical branch on top (odd parity). This order of modes is
unchanged at X when K f

A→B > 0 [Fig. 3(h)], but reversed
when K f

A→B < 0 [Fig. 3(i)]. Interestingly, for K f
A→B < 0, i.e.,

k f
1 < k f

2 , the diatomic phonon modes can be viewed shifted
by half a unit cell, as shown by the dashed ovals in Fig. 3(i)
shifted from Fig. 3(g), to become out of phase in the neigh-
boring unit cells. Then, the optical mode is seen to have two
atoms in one unit cell breathing out while the two atoms in the
neighboring cell are breathing in [upper panel of Fig. 3(i)], as
if there is no restoring force. Such behavior of optical mode
switching is previously known; here, we link it to phonon
topology, as the physical underpinning of a negative CLC of
force constants coupling the two-atom cluster modes, leading
to “mode inversion” as the modes propagate over the lat-
tice and hence a nontrivial phonon-band topology. We note
that the phonon topology via mode inversion corresponds to
the sign of CLC of force constants as we define here, not
the sign of individual element of force constant or dynamic
matrix.

B. Recast 2D Kane-Mele model with collective
lattice-coupling variable

The above correspondence between the sign of overall
CLC variable of two quantum states and their energy order
(i.e., sign of topological gap) can be further generalized to
topological states in 2D lattices [9], in particular, the Dirac
bands with zero CLC at the Dirac point without band inver-
sion. For example, consider the graphene lattice as shown
in Fig. 4(a); the original Kane-Mele model [10] showed that
without on-site mass terms (�) and SOC (λ), one has Dirac
bands, which correspond to zero CLC (TA→B = 0) in our
present model; adding the mass term (breaking inversion sym-
metry) without SOC (also for the case of � > λ), one has a
trivial gap, which corresponds to a positive CLC (TA→B > 0);
adding SOC without the mass term (also for the case of � <

λ), one has a topological gap, which corresponds to a negative
CLC (TA→B < 0). Therefore, one sees that SOC can open
a topological gap by effective tuning of the sign of TA→B.
Specifically, Kane and Mele included a second NN SOC hop-
ping term (the second term of Eq. (6) in [10]), which can be
recast into a complex “mass” term added to the diagonal term
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of 2 × 2 Hamiltonian matrix:

H =
(

� − 4λcos
(√

3ky
2

)
sin

(
kx
2

) + 2λsin(kx) t1 + (
e−ikx + e−ikx/2−i/2

√
3ky

)
t2

t1 + (
eikx + eikx/2+i/2

√
3ky

)
t2 −� + 4λcos

(√
3ky
2

)
sin

(
kx
2

) − 2λsin(kx)

)
. (2)

Then, for our CLC model, we derive TA→B =
t1 + (e−ikx + e− 1

2 i(kx+√
3ky) )t2 + 2� − 8λcos(

√
3ky
2 )sin( kx

2 ) +
4λsin(kx), which includes all the intracell hopping and
intercell hopping terms. [We note that for a hexagonal lattice
with two atoms, one orbital each per unit cell, one of the
NN interatomic hoppings (t1) represents the intracell hopping
and the other two NN interatomic hoppings (t2) represent
the intercell hopping, which both appear in the off-diagonal
terms of 2 × 2 Hamiltonian matrix, while the second
NN SOC hopping represents the intercell hopping, which
appears in the diagonal terms.] Here, we have purposely
choose a nonzero � and t1 �= t2 without enforcing either
inversion or C3 symmetry, to show that one can use CLC to
characterize different topological bands without imposing
symmetry indicator of topological band, as demonstrated in
the following.

For comparison, we first preserve C3 symmetry setting
t1 = t2 = 1. Without SOC, the gap closes at K as shown
in Fig. 4(b). Then, TA→B(K ) = 2(� − 3

√
3λ), which shows

that the on-site energy difference, namely the energy order
of two quantum states, is positively correlated with � but
negatively correlated with SOC strength λ, as mentioned
above. Next, we illustrate three cases: (1) � = 0.5 eV and
λ = 0.0, TA→B(K ) = 1: it opens a trivial gap at K, as shown

in Fig. 4(c), (2) � = 0.5 eV and λ = 0.05 eV, TA→B(K ) =
0.48: it opens also a trivial gap, as shown in Fig. 4(d).
(3) � = 0.5 eV and λ = 0.15 eV, TA→B(K ) = −0.56: it opens
a nontrivial gap, as shown in Fig. 4(e). We plot the band gap
as a function of λ in Fig. 4(f), to confirm the topological
phase transition in accordance with the sign of TA→B as λ

increases.
Next, let us break the C3 symmetry setting t1 �= t2

with t1 = 1 and t2 = 0.8. Without SOC, the Dirac point
still exists but shifts away from K to another k point A
(2π−arccos(−5/8), 4π√

3
− √

3(2π−arccos(−5/8)) along the
K-M path, where CLC vanishes, as shown in Fig. 5(a). Now
adding SOC, at point A, TA→B(A) = 2� − 13

√
39λ

8 . The on-
site-energy � makes the CLC positive to open a trivial gap,
as shown in Fig. 5(b). If one gradually increases λ, the gap
gradually decreases and closes at λ = 0.1 eV, as shown in
Fig. 5(c). As λ is further increased, CLC becomes negative
and a nontrivial gap opens at A, as shown in Fig. 5(d).

Alternatively, one can also derive the CLC using π =
(|A〉) ± |B〉/√2 and π∗ = (|A〉) ± |B〉/√2 states as bases,
then the CLC of π hopping is calculated in a more com-
pact form as TA→B = t1 + t2(e−ika1 + e−ika2 ), where the t1
term is the intracell and the t2 term is the intercell NN hop-
ping, respectively, and a1 (a2) are lattice vectors, and same

FIG. 4. Illustration of CLC-topology correspondence for honeycomb lattice with C3 rotation symmetry. (a) Schematic honeycomb
lattice. Sublattice A and B sites are marked by red and blue dots, respectively. The red and blue dashed arrows denote the SOC. (b)
The band structure without SOC and with zero on-site energies. The inset shows the edge states. (c) The band structure for � =
0.5 eV. The inset shows the trivial edge states. (d) The band structure for � = 0.5 eV and λ = 0.05 eV. The inset shows the trivial edge
states. (e) The band structure for � = 0.5 eV and λ = 0.15 eV. The inset shows the nontrivial edge states. (f) The plot of band gap as a
function of SOC strength λ.
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FIG. 5. Illustration of CLC-topology correspondence for honeycomb lattice without C3 rotation symmetry. (a) The band structure without
SOC and with zero on-site energies. The arrow marks the Dirac point at A along K-M path. The inset shows the edge states. (c) The band
structure for � = 0.5 eV. The inset shows the trivial edge states. (d) The band structure for � = 0.5 eV and λ = 0.1 eV. The inset shows the
Dirac edge states. (e) The band structure for � = 0.5 eV and λ = 0.15 eV. The inset shows the nontrivial edge states.

conclusions can be drawn as above with the topological phase
transition induced by the sign change of TA→B. Similarly, a
CLC of force constants between A and B sublattices can be
defined for graphene phonons.

For electrons, the CLC-topology correspondence estab-
lished above applies also to cases of single atom per unit
cell, because atomic valence orbitals have different (s, p, d
…) parities and interatomic electron hopping can be positive
or negative. One can reformulate the well-known Bernevig-
Hughes-Zhang model of band inversion in a rectangle [11],
triangle [12], or square lattice by defining a CLC of elec-
tron hopping Ts→p between the s- and p orbitals in the
presence of SOC (for details see Fig. S3 in SM [6]). For
phonons, however, the correspondence principle applies only
to multiatom per unit cell, because single atomic vibra-
tions have p symmetry and interatomic spring constant is
always positive so that a CLC of two modes of opposite
parity cannot be defined. This means phonons are always
topological trivial in all materials with single atom per unit
cell.

C. Topological phonon FB with a vanishing collective lattice
coupling at all k points manifesting a negative interatomic

spring constant

Now we further generalize the concept of CLC to topo-
logical FB, to analyze phonon FB in terms of the CLC of
multiatom phonon modes and interatomic spring constant
k f . As shown above, a topological phonon Dirac state cor-

responds to a zero CLC at the Dirac k points. It manifests
topologically local phase cancellation of Bloch wave func-
tions of two phonon modes of opposite parity to form a Berry
flux center. This correspondence applies also to nodal-line
states where the CLC vanishes at k points along a line in BZ
(see Fig. S2 and Sec. II in SM [6]). Differently, a topological
phonon FB, such as in kagome or more generally in line-graph
lattices [12], arises from destructive interference of Bloch
states. It is completely dispersionless, because the phases of
FB-phonon Bloch wave functions cancel out with each other
globally at all the k points in the BZ, independent of the
magnitude of k f . This means that implicitly the phonon FB
mode has a special form of CLC, not expressible as an explicit
function of k f and k, different from the one defined above
for local phase cancellation or band inversion. Instead, it can
be inferred from the real-space FB-phonon wave function,
the so-called compact localized state [13,14], as shown in
Fig. 2(c), calculated from Fig. 1(e). It has six nodal points
at the vertices of a hexagon with red and blue circles denoting
the positive (up) and negative (down) displacement along the z
axis, respectively. Thus, the FB mode is completely localized
in real space, as reflected by cancellation of pairwise restoring
forces acting outside the hexagon [red and blue dashed arrows
in Fig. 2(c)]. This signifies a destructive quantum interference
of phonon wave function underlined by kagome lattice sym-
metry, in analogy to compact localized state of electronic FB
[13,14]. Effectively, the compact localized state in Fig. 2(c)
can be seen as a flux center in real space, where the phase of
wave function evolves periodically around a “loop,” indicating
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the FB has a real-space topology [13–15] without SOC or
band inversion.

However, a topological phonon FB will only manifest a
positive k f in a kagome lattice with one atom per lattice
site, as shown earlier in Fig. 1(d). Therefore, one must con-
sider the case of multiatoms per kagome lattice site, for a
negative k f . For example, we found that the out-of-plane
vibrational modes of diatomic and triatomic kagome lattices
can have FBs manifesting effectively a negative interatomic
(i.e., interkagome-lattice-site) spring constant (see Fig. S4 and
Sec. IV in SM [6]). Here, we focus on explaining the sur-
prising results of kagome-BN in Fig. 2(b) by considering the
in-plane vibration modes from a four-atom cluster (two B
and two N atoms) on each kagome lattice site. As shown in
Fig. 2(a), there are three different springs: N–N bond (k f

11),
B-N bond (k f

12), and B–B bond (k f
22), and two atoms of dif-

ferent mass: B (11 amu) and N (14 amu). From the calculated
phonon spectra containing 24 bands [(Fig. 2(e)], we found two
sets of kagome bands in the range of ∼25–50 THz, as shown
in Fig. 2(d), which agree nicely with the DFT results featured
with two FBs both manifesting a negative k f . It is worth
noting that the model calculations are done by setting k f

11 =
8000 N/m, k f

12 = 5600 N/m, and k f
22 = 2500 N/m, perfectly

consistent with the order of bond lengths (N–N bond: 1.02
Å, B–N bond: 1.36 Å, and B–B bond: 1.70 Å) or strength.
Also, different atomic mass of B and N are used which affects
the results quantitatively but not qualitatively. We further plot
the eigenmodes at � for these six phonon bands which agrees
perfectly with the DFT results as shown in Fig. 2(f) (Here, we
only show eigenmodes at � for phonon band at 36 THz; see
Fig. S7 in SM for other five eigenmodes at �).

III. CONCLUSION

Finally, we comment on some general implications of the
intriguing negative interatomic spring constant manifested by
multiatom topological phonon FB and the established CLC-
topology correspondence. It provides a unified view for three
classes of topological bands: Dirac bands, inverted band gap,
and FB. Dirac points correspond to zero CLC at specific k
points. This can be achieved for both fermions and bosons
by symmetry in a crystal. Most topological phonons found
in real materials belong to this category, such as phononic
Dirac/Weyl point [16–20] and nodal-line states [21–26]. Sec-
ond, topological gap, including high-order topological gap
(see Figs. S5 and S6 and Sec. V in SM [6]), correspond to
a negative CLC at specific k points. Without SOC, this is
achievable for both electrons and phonons through alterna-
tion of single and double bonds between the same atoms to

modulate bond strength, such as 1D polyacetylene [27] and
2D graphdiyne to realize the Kekulé model of high-order
topological gap [28]. On the other hand, starting from a topo-
logical Dirac state or a trivial narrow-gap semiconductor with
s- and p-band edges, band inversion can be induced by adding
SOC to turn the CLC negative. In this sense, all electronic
materials could be topological with SOC, provided it has
the right lattice constant and position of Fermi level [29].
However, it is much harder for phonons lacking SOC to attain
a negative CLC. Another fundamental difference is that the
electronic bands of single atom per unit cell can be topological
because a CLC, such as between atomic s- and p valence, can
be defined; while the phonon bands of single atom per unit
cell are always trivial because a CLC cannot be defined. For
these reasons, so far topological gaps of phonon bands have
been studied by models implicitly assuming a negative CLC
of force constants [30–33], but rarely in real materials. On the
other hand, what we established for phonons can be readily
applied to bosonic topological states in artificial systems, such
as photonic, acoustic, and mechanical wave [33–37], where
CLC can be manipulated by design. Especially, FB corre-
sponds to a zero CLC at all k points, so that bosonic FBs of
opposite chirality can be manufactured in artificial systems by
designing positive versus negative “interatomic” coupling.

In conclusion, we have introduced the concept of CLC
to provide an alternative view of band topology, namely
the formation of topological band gap and band degeneracy
corresponds to different CLC values, respectively. This has
enabled us to reveal the negative interatomic spring constant
associated with phonon flat band, which would be hard to
understand based on symmetry-based topological invariant of
bands. In this context, one can readily extend the concept of
CLC to topological order in quasicrystals [38,39] and even
amorphous systems [40], where the CLC can be formulated
independent of crystalline symmetry. One can start at one unit
cell with two quantum states of opposite parity, then define the
CLC of intra- and intercell hopping over the whole lattice, to
construct a real-space tight-binding model. Another very in-
teresting example is the discovery of “high-order topological
point state” based on the concept of CLC [41].
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