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Topological alloy engineering and locally linearized gap dependence on concentration
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Alloy engineering is a well-established approach to tune various materials’ properties, but its application
to topological alloys remains rudimentary. Of special interest is the band gap, the most defining property of
topological materials; however, the concentration dependence of energy gaps in topological alloys remains
unknown. Here we systematically investigate the band gap evolution of a topological alloy as a function of
alloy concentration, using KZnSb1−xBix as a prototype, based on first-principles calculations. In contrast to the
well-established smooth bowing curve for a trivial gap in semiconductor alloys, we found that the topological gap
evolves generally with a complex fragmented pattern due to topological phase transitions, and most strikingly a
linear dependence on concentration locally in each distinct phase. Such gap linearization is fundamentally rooted
in the linear dependence on alloy concentration of spin-orbit coupling (SOC) that predominantly determines
a topological gap. Furthermore, we demonstrate topological alloy engineering as a general approach to tune
the topological order by modulating the band edge composition and degeneracy through the alloying-induced
interplay of SOC and atomic orbital on-site energy, while the linear gap dependence on alloy concentration
remains independent of the degree of topological order.
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I. INTRODUCTION

The band gap is one of the most fundamental physical
quantities underlying the electrical, optical, and optoelec-
tronic properties of crystalline materials with the Fermi level
lying in an energy gap in the electronic band structure. For
conventional semiconductors and insulators [1–3], electrical
and photoelectrical conduction is highly correlated with the
band gap size [4–13], as well as combination of gaps in
heterojunctions [14,15]. Recently, a different type of “topo-
logically gapped” insulator has been discovered, attracting
much attention [16–26]. The topological gap, or the absence
of it, not only signifies the topological order but also plays
an important role in defining the strength of topological
order, namely the energy window within which quantized
surface/edge Hall conductivity resides and the transition tem-
perature for a topological phase transition occurs.

Alloying is the one of the most effective methods used
for tuning various materials’ properties, such as mechanical,
electrical, optoelectronic, and magnetic properties, which has
been extensively studied in physics and materials community.
In the simplest form, the effect of alloying is explained by
Vegard’s law [27,28], for which the property of an alloy, such
as lattice constant, is linearly interpolated between those of
the two pure phases while high-order terms are neglected.
However, in terms of band gap of semiconductors, i.e., normal
insulators in general, Vegard’s law fails; instead, a well-known
bowing curve is used to describe uniformly the dependence of
band gap on alloy concentration over the whole composition
range [4–12,29–37]. It indicates the general importance of
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nonlinear alloying effects, including (i) volume deformation,
(ii) chemical electronegativity, and (iii) structural deformation
[31,32,34,38].

Naturally, alloying has also been attempted to tune the
properties of topological materials, such as to induce topolog-
ical phase transitions [39–55]. However, most studies so far
have been trial and error in nature focusing on a specific aspect
related to alloying for a small composition variation. A gen-
eral understanding of how topological gap depends on alloy
concentration, especially over the whole composition range,
is still lacking. This question is especially important because
the topological alloys have usually a narrow gap which can
be easily tuned by chemical composition, where not only the
size but also the “sign” of gap can be changed because of band
inversion. Furthermore, different from a charge gap in conven-
tional semiconductors, which is determined by atomic orbital
on-site energies and lattice hopping strength, a topological gap
is critically determined by the strength of spin-orbit coupling
(SOC), which is expected to have a different alloy concentra-
tion dependence with significant implications on topological
alloying engineering. Here, we will answer this fundamental
question by a systematic first-principles theoretical study, us-
ing KZnSb1−xBix as a prototypical topological alloy.

II. CALCULATION METHODS

Our first-principles calculations are based on density func-
tional theory (DFT) with plane-wave basis using QUANTUM

ESPRESSO package [56] in the Perdew-Burke-Ernzerhof (PBE)
type generalized gradient approximation (GGA) [57]. The
norm-conserving nonlocal pseudopotentials are generated us-
ing OPIUM [58]. Alloying is considered within virtual crystal
approximation (VCA), where an artificially “A-B alloyed”
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atom is constructed by interpolating pseudopotentials of A and
B atom, to represent a perfectly random distribution in the
thermodynamic limit of an infinite alloy system. The energy
cutoff for the basis is set to 50 Ry. The atomic structure is
fully relaxed with the force threshold of 1e−2eV/Å, and the
9 × 9 × 9 Monkhorst-Pack grid [59] is used for k-point sam-
pling. The lattice constants of KZnSb (KZnBi) are calculated
as a = 4.52(4.69) Å and c = 10.16(10.56) Å. The quasipar-
ticle interference patterns (surface spectra) are obtained by
calculating the surface Green’s function for a semi-infinite
geometry [60] by Wannier tools [61], with Wannier Hamil-
tonian generated using the WANNIER90 package [62]. In the
Wannierization process, the (010) surface is constructed us-
ing a rectangular supercell consisting of two unit cells, with
the conduction and valence states projected to the Zn s and
Sb/Bi p orbitals near the Fermi level. We note that the VCA
method can capture the alloying induced effects of volume
deformation and chemical electronegativity but not structural
deformation, which leads to an underestimation of bowing
effect [38]. However, our objective is to obtain a general trend
of TPTs and gap dependence on continuous change of concen-
tration over the whole composition range (from 0 to 100%),
for which the VCA method is a suitable and qualitatively
reliable.

We discover a locally linearized dependence of topological
gap on alloy concentration that is believed to be general to
all topological alloys. First, instead of one smooth uniform
bowing curve of gap evolution in semiconductors, topological
alloys should usually exhibit multiple regions of different
curves of gap evolution due to topological phase transitions,
induced by gap closing and reopening processes accompanied
with band inversion at given alloy concentrations. Second,
within each region of a distinct topological phase, topologi-
cal gap will “universally” evolve linearly with concentration.
Apparently, in the region of a topological semimetal phase
of zero gap, the gap “size” remains constant. Specifically,
for KZnSb1−xBix, our first-principles calculations reveal a
complex linear-constant-linear gap evolution curve with the
increasing concentration, underlined by a sequential occur-
rence of three distinct phases of normal insulator (NI), Dirac
semimetal (DSM) and topological crystalline insulator (TCI).
It is revealed that this is caused by bands being inverted
twice due to the alloying-induced interplay of SOC strength
and on-site energy modulation. Furthermore, we demonstrate
topological alloy engineering as a general approach to tune the
topological order by modulating the band edge composition
and degeneracy, while the linear gap dependence on alloy con-
centration is independent of the degree of topological order.
We develop a tight-binding (TB) lattice model to explain and
analyze the findings from first-principles calculations, using a
nested Wilson loop method [see Fig. S1, Fig. S2, Table SI, and
related discussions in the Supplemental Material (SM) [63]].

III. LOCALLY LINEARIZED GAP DEPENDENCE ON
ALLOY CONCENTRATION

Both KZnSb and KZnBi crystals are the layer-structured
ABC materials and belong to I-II-IV ternary compounds with
an hcp structure [64–70], hosting various topological phases.
Figure 1(a) shows the crystal structure of KZnSb1−xBix

FIG. 1. Crystal structure and BZ of the KZnSb1−xBix alloys. (a)
Top view and oblique projection of crystal structure of KZnSb1−xBix

alloy. K, Zn, and Sb (Bi) atoms are represented by light blue, gray,
and purple balls, respectively. (b) Bulk and surface Brillouin zone of
KZnSb1−xBix alloy.

alloy. As seen from the oblique view of the crystal structure
[lower panel of Fig. 1(a)], the most stable structure has planar
honeycomb layers composed of B site (Zn) and C site (Sb,
Bi) atoms. It has space group no. 194 (P63/mmc), containing
time reversal (T ), inversion (P), and twofold (sixfold) rotation
along the x-axis (z-axis) (C2x and C6z) symmetries. Figure 1(b)
shows the bulk Brillouin zone (BZ) and the surface BZ pro-
jection of KZnSb1−xBix alloys.

Figure 2(a) shows the calculated band gap evolution curve
of KZnSb1−xBix over the whole composition range. One finds
a gapless phase in between two gapped phases, which are
identified to be NI, DSM, and hourglass TCI phases, re-
spectively. In the range x = 0.23–0.45, the DSM phase is
characterized with a pair of topological Dirac points (DPs).
Such a complex evolution pattern of band gaps, consisting of
four distinct regions, is attributed to two reasons: the double
band inversion (DBI) and change of band edge representations
of the conduction band minimum (CBM) and/or valence band
maximum (VBM). From region I to II, a phase transition
from NI to DSM occurs, triggered by a gap closing process.
Within region II of DSM, there exist hidden gap opening and
closing processes, accompanied by a change of band edge
composition without changing band topology. From region II
to III, a DSM to TCI phase transition occurs, triggered by a
gap reopening process. Both regions III and IV are TCI phases
but have a different gap dependence (slope) on alloy concen-
tration, due to a change of valence band edge representation.

Interestingly, one notices that in each region of Fig. 2(a),
the gap changes with alloy concentration linearly with negligi-
ble bowing effect. We argue that this predominantly originates
from the fact that the SOC strength and hence the SOC gap has
a linear dependence on alloy concentration. In other words,
fundamentally a topological gap is predominantly determined
by the SOC, different from a charge gap that is determined by
on-site energies and lattice hopping strength. To confirm this,
we plot the SOC splitting between the j = 3/2 and j = 1/2
states originating from the Sb1−xBix p orbitals in Fig. 2(b),
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FIG. 2. Electronic structure evolution in KZnSb1−xBix alloy. (a) Band gap (Eg) evolution of KZnSb1−xBix alloy as a function of Bi alloy
concentration (x). (b) SOC splitting (�SOC) between j = 3/2 and j = 1/2 states at A point as a function of x. (c) Evolution of energy
eigenvalue (ε�) alignments and representations at � as a function of x. (d) Phase diagram as a function of x and schematic diagram of
DP creation/annihilation during NI to TCI phase transition leading to DBI. Red cross marks the DP. (e) Schematic diagram of band crossings
along high symmetric �-A line during DBI. DPs are highlighted by red circles.

reflecting the on-site SOC strength, which clearly shows a
linear dependence on alloy concentration over the whole com-
position range x = 0.0–1.0. We note that the nonlinear effects,
such as the one due possibly to structural deformation [32,38],
are also suppressed by the existence of multiple phase transi-
tions that divide the composition variation into smaller ranges
within each topological phase, which makes the linear SOC
term locally more dominant. Interestingly, if one looks glob-
ally at the gap curve over the whole composition range, it has
actually a large bowing effect with the gap first decreasing and
then increasing, as obtained from the VCA method, indicating
that the gap linearization happens only locally within each
segment of different phases.

IV. TOPOLOGICAL ALLOYING ENGINEERING

The discovered local linear gap dependence on alloy con-
centration provides a general and useful guideline to tune
the topological phases by topological alloying engineering.
Furthermore, we found that alloying will change the band
edge composition (representation) and degeneracy by modu-
lating the interplay between on-site SOC and atomic orbital
energies, to induce not only topological phase transitions
as mentioned above but also hidden high-order topological

phases but without changing the linear gap dependence on
concentration, as we illustrate below.

Overall, there are four regions of linear gap dependence
with a different local slope. In region I, the band gap is direct
and trivial in the presence of SOC that will nevertheless affect
the trivial gap size; both CBM and VBM are located at the
zone center with representation �+

7 and �−
9 , respectively. In

region II, there is a constant zero gap for a DSM phase. In
regions III and IV, the gap is nontrivial and indirect. The CBM
is always at � with representation �+

9 , but the VBM is at A
with representation A6 in region III and σ5 in the middle of
the high-symmetry �−M line in region IV, respectively. This
change of the VB edge is responsible for the change of slope
of the band gap from region III to V, i.e., a kink in the band
gap evolution curve at x = 0.68 within the TCI phase.

As mentioned above, there are DBIs during the NI-DSM-
TCI phase transition over the whole composition range. This
is because there are four bands instead of the usual two bands
near the Fermi level that are involved with the topological
phase transitions induced by alloying. Specifically, their rep-
resentations at � are �+

9 , �−
9 , �+

7 , and �−
8 , respectively, and

Fig. 2(c) shows the evolution of their relative alignments as
a function of alloy concentration. The black dashed lines
indicate the two critical alloy concentrations (xc1 and xc2)
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FIG. 3. Representative band structures illustrating band inversion in KZnSb1−xBix alloy for three distinct phases [(a) NI, (b) DSM, and (c)
TCI]. Atomic orbital projection of j = 3/2 and j = 1/2 are presented with red and blue colored dots, respectively (upper panel). Product of
parity eigenvalues at TRIM for the occupied states (lower panel).

where the topological phase transitions occur. Therefore, there
exist two phase transitions going from KZnSb to KZnBi by
Bi alloying. The first NI-to-DSM transition occurs at xc1 =
0.23 by the inversion of �+

9 and �−
8 states, while the second

DSM-to-TCI phase transition occurs at xc2 = 0.45 by the in-
version of �+

7 and �−
9 states. Each band inversion indicates a

topological transition. One can find a nontrivial Z2 topology
in the DSM phase confirmed by the odd times of inverted
parity eigenvalues at time reversal invariant momenta (TRIM)
[71]. On the other hand, the TCI phase is nontrivial with gap-
less boundary states protected by crystalline spatial symmetry
(such as rotation symmetry discussed below), but has a trivial
Z2 topology defined by inversion symmetry. In other words,
the TCI phase is made of two copies of Z2 phases with bands
inverted an even number of times.

The phase transition sequence of NI-DSM-TCI was mod-
eled previously by the rotation symmetry analysis instead
of alloying and explained by one sequence of creation and
annihilation of DPs [72]. Interestingly, in KZnSb1−xBix, there
exists a process of DBI, where the sequence of creation and
annihilation of DPs happen twice due to alloying. To better
understand the DBI, Fig. 2(d) shows the general phase dia-
gram of KZnSb1−xBix and a schematic diagram illustrating
the behavior of DPs in the DSM phase, and Fig. 2(e) presents
the schematic diagram of band structure evolution in terms
of representations along the high symmetric line A−�−A. By
compatibility relations, four states (�+

9 , �−
9 , �+

7 , and �−
8 ) at

� become �9, �9, �7, and �8 on the �−A line. At the zone
boundary, �7 and �8 merge into A6 and two �9 states merge
into A4 ⊕ A5.

The first NI-to-DSM phase transition is induced by the
first band inversion that occurs at xc1 = 0.23 [first column of
Figs. 2(d) and 2(e)], which is accompanied by the creation
of a pair of DPs on the �−A line. As the alloy concentra-
tion x increases, the separation of two DPs increases [second
column of Figs. 2(d) and 2(e)]. At a “pseudocritical” al-
loy concentration x′

c = 0.41, the two DPs merge at the zone
boundary A. This leads to an accidental band crossing, where
the band degeneracy becomes eightfold, i.e., a doublet of
DPs: A4(2) ⊕ A5(2) ⊕ A6(4). At the same time [third column
of Figs. 2(d) and 2(e)], a new pair of DPs are created, but

the system remains as a DSM with a different Fermi surface
consisting of one eightfold DP doublet instead of two four-
fold DP singlets. As x increases further [fourth column of
Figs. 2(d) and 2(e)], two DPs reappear and move back toward
the zone center. However, their representations change into
�8 and �9 from the previous �7 and �9. Finally, the system
reaches the second critical alloy concentration xc2 = 0.45 [last
column of Figs. 2(d) and 2(e)], where a DP pair annihilation
happens again but accompanied with gap opening, leading to
the DSM-to-TCI phase transition.

Figure 3 shows the typical electronic band structures of
three distinct phases at different alloy concentrations. The
gapped band structures of pure KZnSb and KZnBi are shown
in Figs. 3(a) and 3(c), respectively. In the alloy range x =
0.23–0.45, the alloy is gapless as for a DSM phase, whose
band structure is represented in Fig. 3(b) using x = 0.28. In
all cases, the most dominant atomic orbitals near the Fermi
level are Zn s and Sb (Bi) p orbitals, which are common in this
kind of ternary compounds [64,66,69]. The contribution from
K in the intercalated site (the A site) is negligible. The energy
difference of B-site s orbitals and C-site p orbitals, intertwined
with SOC, plays an important role in defining the topological
phases. With the increasing alloy concentration, the energy
of the Zn-s and Sb/Bi-p dominated bands move downward
and upward, respectively, causing eventually a gap closing and
reopening process to induce topological phase transition.

The on-site energy and SOC strength at three selected
alloy concentrations to represent NI, DSM, and TCI phases,
respectively, are obtained by fitting a TB lattice model to
DFT results, as tabulated in Table I (a table of all the pa-

TABLE I. Parameters of KZnSb1−xBix lattice model (εs is for Zn
atom, set to 0; εp is for Sb, Bi, or virtually alloyed atom of Sb1−xBix).

In unit of eV KZnSb KZnSb0.72Bi0.28 KZnBi

εs 0 0 0
εpx/y −6.728 −5.584 −4.509
εpz −4.528 −3.112 −2.163
λSOC 0.203 0.436 0.568
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(a) (b)

FIG. 4. Topological surface states of KZnSb1−xBix.28 illustrating
the first-order topology in the DSM phase. (a) topological surface
states of DSM phase (x = 0.28) on the (010) side surface, (b)
topological surface states of TCI phase (x = 1.0) on the (010) side
surface.

rameters for the TB model of alloy is available in the Table
S1 in the SM [63]). As the concentration of Bi, which has
a larger SOC, increases, the overall SOC strength increases.
Also, it is the interplay between the changing on-site en-
ergies of Zn-s and Sb1−xBix-p orbitals and the changing
SOC strength that determines the evolution of band topology.
Specifically, in the range of Bi concentration between 0.23
and 0.45, the alloy is in the DSM phase, having a pair of
DPs on the threefold rotational symmetry axis (kx, ky = 0:
kz axis). The electron and hole pockets are mainly composed
of Zn s and Sb (Bi) p orbitals, respectively, and they touch
at the DPs on the high symmetry line �−A. In one case
shown in Fig. 3(b), this touching point is located at 0.153A
(0.0, 0.0, 0.153π

c ). Topological DPs exist as a pair in the
BZ [±0.153A(0.0, 0.0,±0.153π

c )] due to the time reversal
symmetry (TRS).

From the atomic projection, as represented by the color
scheme in Fig. 3(b), one can see the trend of band inversion
between the Zn s-originated j = 1/2 and Bi p-originated j =
3/2 bands, and the Z2 topological invariant can be calculated
by using the parity eigenvalues at TRIM [71]. The products
of the parity eigenvalues at TRIM are presented in the lower
panel of Fig. 3; their values at � show the inverted bands in the
DSM phase and the twice inverted bands, i.e., DBI in the TCI
phase, which have the nontrivial and trivial Z2 topology, re-
spectively. In the DSM phase, although the bands are inverted
in the same way as in a TI, C3z rotation symmetry protects
the band degeneracy at the crossing point on the rotational
axis (kz axis), to prevent gap opening. Representations of the
crossing bands are �9 and �8 in the little group C6v on the
high-symmetric �−A line, which are both eigenstates of the
C3z rotational operator with eigenvalues of eiπσz and ei(π/3)σz ,
respectively. Due to the compatibility relation, �9 and �8

evolve into �+
9 and �−

8 at �, respectively.

Figure 4 shows the topological surface states in the DSM
and TCI phases. In the DSM phase, the kz = 0 and kz = π

plane have different Z2 numbers computed by using the Fu-
Kane formula [71] or Wilson loop calculation [73] due to the
band inversion at �. We have calculated the quasiparticle in-
terference (QPI) spectra by using the surface Green’s function
method [60]. In the DSM phase [Fig. 4(a)], there are an odd
number of surface states between the two projected DPs on
the �̃ − Z̃ line of the (010) surface BZ. On the other hand, in
the TCI phase [Fig. 4(b)], the well-known hourglass surface
states can be found inside the bulk band gap.

Moreover, the topological DP can be a singular point for
a higher-order topological phase transition [74]. Indeed, in
the DSM phase, we found there exists nontrivial higher-order
topology, based on the nested Wilson loop calculation [74–76]
[see Fig. S2(m) in the SM [63]], using the lattice TB model of
the DSM phase with the parameters listed in Table SI in the
SM [63]. The nontrivial winding in the nested Wilson loop
calculation with 1/3 or 2/3 Wilson bands on every kz slice
indicates nontrivial second-order phase transition across the
DPs subject to the C3z symmetry [see Figs. S1(e) and S1(h) in
the SM [63]]. It means that breaking the C3z symmetry would
open a gap at the two DPs on the kz line, which trivializes the
second-order topology but preserves the first-order topology
by turning the DSM phase into a TI phase (see Fig. S2 in the
SM [63]).

V. CONCLUSION

We reveal a locally linearized gap dependence on concen-
tration in KZnSb1−xBix, which is believed to be general to
all topological alloys. Because not only the size but also the
sign of topological gap will change with varying alloy concen-
tration, generally the topological gap exhibits a fragmented
gap evolution with concentration, rather than a uniform evo-
lution for a trivial gap, such as the well-known bowing
curve for a semiconducting gap. Most strikingly, within each
fragment the topological gap, predominantly determined by
SOC, changes linearly with concentration. Specifically, for
KZnSb1−xBix, there exist double band inversions leading to a
sequence of NI-DSM-TCI phase transitions. The DSM phase
is also found with second-order topology due to the alloy-
ing induced interplay between on-site energy and SOC. Our
findings provide a general understanding of the topologically
gapped alloys and a useful guideline to manipulate and control
topological phases by alloy engineering.
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