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Inversion/Mirror Symmetry-Protected Dirac Cones in Distorted Ruby Lattices
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The exotic electronic band structures of Ruby and Star lattices, characterized by Dirac cone and nontrivial
topology, offer a unique platform for the study of two-dimensional (2D) Dirac materials. In general, an ideal
isotropic Dirac cone is protected by time reversal symmetry and inversion, so that its robustness against lattice
distortion is not only of fundamental interest but also crucial to practical applications. Here we systematically
investigate the robustness of Dirac cone in a Ruby lattice against four typical lattice distortions that break the
inversion and/or mirror symmetry in the transition from Ruby to Star. Using a tight-binding approach, we show
that the isotropic Dirac cones and their related topological features remain intact in the rotationally distorted
lattices that preserve the inversion symmetry (𝑖-Ruby lattice) or the in-plane mirror symmetry (𝑚-Ruby lattice).
On the other hand, the Dirac cones are gapped in the 𝑎- and 𝑏-Ruby lattices that break both these lattice
symmetries or inversion. Furthermore, a rotational unitary matrix is identified to transform the original into the
distorted lattice. The symmetry-protected Dirac cones were also verified in photonic crystal systems. The robust
Dirac cones revealed in the non-mirror symmetric 𝑖-Ruby and non-centrosymmetric 𝑚-Ruby lattices provide a
general guidance for the design of 2D Dirac materials.
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Motivated by the intriguing properties and ex-
tensive applications of graphene,[1−3] two-dimensional
(2D) Dirac materials have been drawing increasing in-
terests in physics and materials science. The elec-
tronic band structures of Dirac materials can be
featured by the linear energy-momentum dispersion
(named as Dirac cone) near the Fermi level which
differs significantly to the parabolic dispersion rela-
tion in normal semiconductors. The carriers near the
Fermi level behavior as the massless Dirac fermions
that obey the Dirac equation. Such a linear energy-
momentum dispersion was also correlated to a num-
ber of fascinating properties, such as quantum anoma-
lous hall effect (QAHE),[4−8] quantum spin hall effect
(QSHE)[9−11] and even fractional quantum hall effect
(FQHE),[12−18] bringing about new concepts for the
next-generation electronic devices.

The relation between lattice symmetry and elec-
tronic structure provides a powerful mean for the ex-
ploration of 2D Dirac materials. In general, an ideal
isotropic Dirac cone is protected by time reversal sym-
metry and inversion. According to this principle, a
number of lattice models, such as honeycomb,[1−3]

Kagome,[19−22] Ruby,[23−25] and Star lattices,[26−28]

have been proposed to possess intrinsic Dirac cones
in their electronic band structures, accompanied by
topologically nontrivial electronic states. The Dirac

cones originating from the energy band crossing can
be described by a simple Hamiltonian of a two-band
system as follows:

𝐻(𝑘) =

[︂
𝐻11(𝑘)− 𝐸 𝐻12(𝑘)
𝐻21(𝑘) 𝐻22(𝑘)− 𝐸

]︂
. (1)

The appearance of Dirac cones corresponds to the de-
generate solutions of this Hamiltonian, i.e., the de-
terminant of 𝐻(𝑘) should be zero and the follow-
ing equations should be fulfilled: 𝐻11(𝑘) = 𝐻22(𝑘),
𝐻12(𝑘) = 0, and 𝐻21(𝑘) = 0 at the Dirac points. In-
trinsically, these equations should be simultaneously
satisfied to have a degeneracy, known as the von
Neumann–Wigner theorem.[29,30] However, the num-
ber of variables (𝑘𝑥, 𝑘𝑦) is usually less than the number
of the equations to determine the Dirac points, making
2D Dirac materials rare. Spatial inversion symmetry
can lead to 𝐻11(𝑘) = 𝐻22(𝑘) and thus is regarded as
one of the requirements of 2D Dirac materials. Addi-
tionally, mirror symmetry is also included in these lat-
tice models, but the necessity has never been demon-
strated.

Among these lattice models, the Ruby and Star
lattices are of particular interest, owning to the flex-
ibility in electronic structures and abundant physical
phenomena.[12−18] The Ruby lattice is constructed by
placing regular triangles at the vertexes of a honey-
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comb lattice in an “edge-to-edge” way, as shown in
Fig. 1(a), while the “vertex-to-vertex” arrangement of
triangles leads to the Star lattice, as shown in Fig. 1(f).
Both spatial inversion symmetry and mirror symme-
try are involved in these two lattices with the point
group of 𝐷6ℎ. The Dirac cones and topologically
nontrivial states inherited in these two lattices have
been demonstrated from different approaches.[23−28]

The topological flat bands originating from the ge-

ometric frustration of Bloch wave functions in these
lattices pave a new way for achieving fractional quan-
tum Hall effects.[12−18] The highly-localized electron
density of states at the Fermi level may also lead to
strong electron correlation interaction and supercon-
ducting properties. A 2D graphene-like carbon nitride
has also been proposed as a candidate material to re-
alize the Dirac cones and nontrivial topology of the
Ruby lattice.[31]
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Fig. 1. Schematic of (a) perfect Ruby, (b) 𝑖-Ruby, (c) 𝑚-Ruby, (d) 𝑎-Ruby, (e) 𝑏-Ruby, and (f) Star lattices. Here
𝑎𝑏 are set to be the bond lengths of the Ruby lattice; 𝑡(𝑡′), 𝑡1 (𝑡′1) and 𝑡2 represent different hopping amplitudes,
respectively; 𝜆(𝜆′) represents the strength of SOC indicated by the triangular arrows in the figure. The yellow
rhombus indicates the shape of the unitcell. Schematic representations of the structural symmetries of (g) 𝑖-Ruby,
(h) 𝑚-Ruby and (i) 𝑏-Ruby lattices. The hexagons indicate the arrangement of the triangle centers.

It is interesting to see the gap between the geome-
tries of Ruby and Star lattices. In addition to the
highly symmetric edge-to-edge and vertex-to-vertex
patterns, there are obvious abundant lattice structures
with arbitrary orientation between the two adjacent
triangles. Additionally, structural distortion which is
evitable in the material realization of the Ruby and
Star models may break the structural symmetries and
affect the electronic band structures and topological
properties. However, the relevant theoretical investi-
gations on the distorted lattices have rarely been re-
ported.

Here, we bridge the “gap” by four typical distorted
Ruby lattices, named as 𝑖-Ruby, 𝑚-Ruby, 𝑎-Ruby and
𝑏-Ruby, as shown in Figs. 1(b)–1(e), and reveal the
symmetry-dependent electronic band structures using
a tight-binding (TB) method. The spatial reversion
or/and mirror symmetry of the lattices are broken by
rotating or scaling the two adjacent triangles in dif-
ferent ways. We demonstrate that the isotropic Dirac

cones and their related topological features remain in-
tact in the 𝑖-Ruby and 𝑚-Ruby lattices that preserve
the inversion symmetry or the in-plane mirror sym-
metry, as shown in Figs. 1(g) and 1(h). On the other
hand, the Dirac cones are gapped in the 𝑎- and 𝑏-Ruby
lattices that break both these lattice symmetries or
inversion. Furthermore, a rotational unitary matrix
is identified to transform the distorted lattices into
the Ruby or Star lattice. The symmetry-protected
Dirac cones in these lattices were also verified in pho-
tonic crystal systems. The robust Dirac cones pro-
tected by the mirror symmetry found in the non-
centrosymmetric𝑚-Ruby lattice extends the scope the
2D materials, offering a general principle for the de-
sign of 2D Dirac materials.

The four typical distortions of the Ruby lattice
considered in this work were constructed by rotating
or scaling the two triangles in the unit cell in different
ways, while the centers of these triangles were fixed to
a perfect honeycomb arrangement. The synchronous
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rotation (clockwise or anticlockwise) of the two tri-
angles lifts the in-plane mirror symmetry but retains
the spatial inversion symmetry, as shown in Figs. 1(b)
and 1(g), reducing the point symmetry from 𝐷6ℎ to
𝐶6ℎ, which is referred to as 𝑖-Ruby lattice. When the
two triangles are rotated one clockwise another anti-
clockwise, the spatial inversion symmetry is broken,
but the symmetry plane vertical to the line between
the centers of the two triangles is preserved, as shown
in Figs. 1(c) and 1(h). The point group is reduced to
𝐷3ℎ. The resulted lattice is named as 𝑚-Ruby lat-
tice. Both 𝑖-Ruby lattice and 𝑚-Ruby lattices convert
to the Star lattice at 𝜃 = 60∘. As the two triangles

are rotated asynchronously, e.g., rotating only one tri-
angle, both inversion and in-plane mirror symmetries
of the lattice are lifted, as shown in Fig. 1(d), which
is named as 𝑎-Ruby lattice. The point group is fur-
ther reduced to 𝐶3ℎ. For the 𝑏-Ruby lattice, the two
triangles are respectively scaled up and back, liking
“breathing”, which lifts the spatial inversion, but pre-
serves the in-plane mirror symmetries parallel to the
line between the centers of the two triangles, as shown
in Fig. 1(i). The 𝑏-Ruby lattice has the same point
group (𝐷3ℎ) as the 𝑚-Ruby lattice, but different lo-
cations of the mirror planes.
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Fig. 2. Schematic of the energy band of Ruby lattice without SOC. (a) Perfect Ruby with 𝑡1 = 0.8𝑡; (b) 𝑖-Ruby
lattice 𝑡1 = 0.6𝑡; (c) 𝑚-Ruby lattice with 𝑡1 = 0.8𝑡, 𝑡′1 = 0.2𝑡; (d) 𝑎-Ruby lattice with 𝑡1 = 0.8𝑡, 𝑡′1 = 0.4𝑡, 𝑡2 = 0.5𝑡;
(e) 𝑏-Ruby lattice with 𝑡1 = 0.8𝑡, 𝑡′ = 1.2𝑡 and (f) Star lattice 𝑡1 = 0.8𝑡. The Dirac cones in (g) 𝑖-Ruby and (h)
𝑚-Ruby lattices

We build a spin-free tight-binding (TB) Hamilto-
nian of the distorted Ruby lattices as follows:

𝐻0 = −
∑︁
⟨𝑖,𝑗⟩

𝑡𝑖𝑗𝑐
+
𝑖 𝑐𝑗 +H.c., (2)

where 𝑐†𝑖 and 𝑐𝑖 are the creation and annihilation op-
erators of the 𝑖th site, respectively. For simplification,
only the hopping between adjacent sites with the am-
plitude of 𝑡𝑖𝑗 were involved, as indicated in Fig. 1, and
the on-site energy is set to zero (see the Supporting
Information for details).

For the 𝑖-Ruby lattice, there are two types of
nearest-neighbor hopping terms, intra-triangular hop-
ping (𝑡) and inter-triangular hopping (𝑡1), as shown
in Fig. 1(b). The base vectors of the distorted Ruby
lattices are fixed during the rotation. The 𝑖-Ruby lat-
tice converges to the perfect Ruby lattice at 𝜃 = 0.
The energy spectra of the perfect Ruby and the 𝑖-
Ruby lattices obtained from the TB Hamiltonian are
plotted in Figs. 2(a) and 2(b). Obviously, the isotropic
Dirac cones at the 𝐾 and 𝐾 ′ points of the undistorted
Ruby lattice are well preserved in the 𝑖-Ruby lattice,
as shown in Fig. 2(g). More interestingly, if the hop-
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ping parameters (𝑡 and 𝑡1) of the 𝑖-Ruby lattice are set
to the values of the perfect Ruby lattice, the electronic
band structures of the two lattices are identically in-
dependent of the rotation angle 𝜃.

The rotation-independent Dirac cones in the 𝑖-
Ruby lattice is understandable in terms of the uni-
tary transformation between the Hamiltonians of
the 𝑖-Ruby and undistorted Ruby lattice, 𝐻𝑅

0 (𝑘) =
𝑈+𝐻 iR

0 (𝑘)𝑈 . We find a rotational unitary transfor-
mation matrix

𝑈=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑒𝑖𝑣1·𝑘

𝑒𝑖𝑣2·𝑘

𝑒𝑖𝑣3·𝑘

𝑒−𝑖𝑣2·𝑘

𝑒−𝑖𝑣3·𝑘

𝑒−𝑖𝑣1·𝑘

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3)

to correlate the Hamiltonian of the 𝑖-Ruby to that
of the perfect Ruby lattice. In Eq. (3), 𝑣1, 𝑣2 and
𝑣3 are the vectors connecting the pre-rotate-site and
post-rotate-site of three sites of a triangle, respec-
tively (the vectors of three sites of another triangle
are opposite in our settings), and satisfy the constrain
of 𝑣1 + 𝑣2 + 𝑣3 = 0. Therefore, it is natural that
the 𝑖-Ruby and perfect Ruby lattices have the similar
eigenvalue spectrum, because a unitary transforma-
tion does not change the eigenvalues of a Hamilto-
nian. We also involve the next-nearest-neighbor inter-
triangular hopping terms in the Hamiltonian, and find
that the Dirac cones of the 𝑖-Ruby lattice remain in-
tact, suggesting the robustness of the Dirac cones. No-
tably, the Hamiltonians of the two lattices depend on
how the sites are connected and the related hopping
amplitudes. When the hopping amplitudes are fixed,
the Hamiltonians can be converted to each other by
unitary transformation. In this case, there is no signif-
icant difference between the two lattices. The absence
of mirror symmetry in the 𝑖-Ruby lattice excludes the
necessity of mirror symmetry for 2D Dirac materi-
als. Notably, the snub trihexagonal tiling (STT) lat-
tice proposed in our previous work, which has been
verified by the first-principles calculations of Be3 C4

monolayer,[32] can be regarded a special case of the
𝑖-Ruby lattice. The band degeneracy and the Fermi
velocity of 𝑖-Ruby can be modulated by varying the
ratio of the two hopping amplitudes (𝑡1/𝑡0) (see the
Supporting Information for details).

In contrast to the 𝑖-Ruby lattice, the two inter-
triangular hopping terms (𝑡1 and 𝑡′1) in𝑚-Ruby lattice
are no longer identical, due to the absence of inversion
symmetry, as shown in Fig. 1(c). In general, the Dirac
cone in 2D Dirac materials is protected by time rever-
sal symmetry and spatial inversion symmetry. Break-
ing inversion symmetry in a 2D Dirac material always
opens a gap at the Dirac points. We are surprised
that the isotropic Dirac cones is preserved in the 𝑚-
Ruby lattice in the absence of inversion symmetry, as
shown in Figs. 2(c) and 2(h). The Dirac cones found

in this non-centrosymmetric lattice extends the family
of 2D Dirac materials to the systems without spatial
inversion symmetry.

The electronic band structures of the 𝑚-Ruby lat-
tice at different 𝑡′1 values (from 0.8𝑡 to 0) are plotted
in Fig. 3. The evolution of the band structure from a
perfect Ruby [Fig. 3(a)] to a Star [Fig. 3(e)] is obvious.
The Dirac cones are well preserved independent of the
𝑡′1 values. We also involve the next-nearest-neighbor
inter-triangular hopping terms in the TB Hamiltoni-
ans and find that the Dirac cones of the 𝑚-Ruby lat-
tice remain intact, demonstrating the robustness of
the Dirac cones. Additionally, the two bands nearest
to the Dirac bands become flat with the decrease of 𝑡′1
value and are eventually dispersionless at 𝑡′1 = 0. For
the case of 𝑡′1 = 0, we can find a unitary transforma-
tion to convert the Hamiltonian of the 𝑚-Ruby lattice
to that of the Star lattice, 𝐻𝑆

0 (𝑘) = 𝑈+𝐻mR
0 (𝑘)𝑈 ,

with

𝑈=

⎛⎜⎜⎜⎜⎜⎝
𝑒𝑖𝑣1·𝑘

𝑒𝑖𝑣2·𝑘

𝑒𝑖𝑣3·𝑘

𝑒𝑖𝑣4·𝑘

𝑒𝑖𝑣5·𝑘

𝑒𝑖𝑣6·𝑘

⎞⎟⎟⎟⎟⎟⎠ ,

(4)
where 𝑣𝑖 represents the vectors connecting the pre-
rotation-site and post-rotation-site of site 𝑖, respec-
tively, and these vectors satisfy 𝑣1 + 𝑣2 + 𝑣3 = 0 and
𝑣4 + 𝑣5 + 𝑣6 = 0. This is the reason why the band
structure of the 𝑚-Ruby lattice converges to that of
the Star lattice at 𝑡′1 = 0, independent of 𝜃.

To reveal the origins of the Dirac cones in the 𝑖-
Ruby and 𝑚-Ruby lattices, we further break the spa-
tial inversion symmetry and the mirror symmetries by
the asynchronous rotation of the two triangles. For
convenience, we fix one triangle and rotate another
triangle by an angle of 𝜃, which is referred to as 𝑎-
Ruby lattice, as shown in Fig. 1(d). Beside the intra-
triangular hopping, we consider two nearest-neighbor
inter-triangular hopping terms (𝑡1 and 𝑡′1) and one
next-nearest-neighbor inter-triangular hopping term
(𝑡2). From the TB band structure shown in Fig. 2(d),
we can see that the Dirac cones are gaped in the 𝑎-
Ruby lattice. This suggests that the Dirac cones in the
𝑖-Ruby and 𝑚-Ruby lattice are protected by the spa-
tial inversion symmetry and the mirror symmetries,
respectively.

It should be mentioned that if the next-nearest-
neighbor inter-triangular hopping term is excluded
(𝑡2 = 0), the Hamiltonian of the 𝑎-Ruby lattice can be
correlated to that of the 𝑚-Ruby by a unitary trans-
formation, in analogue to Eq. (4). In this case, the
Dirac cones are retained in the 𝑎-Ruby lattice even
in the absence of spatial inversion and mirror symme-
tries. However, these Dirac cones are unstable and
can be gaped by including the more inter-triangular
hopping terms in the TB Hamiltonian.
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Fig. 3. (a)–(e) The energy bands of 𝑚-Ruby lattice with different 𝑡′1/𝑡 = 0.8, 0.6, 0.4, 0.2, 0. (f) Schematic
representation of lattice and hopping parameters of 𝑚-Ruby lattice.

For the 𝑏-Ruby lattice, the inversion symmetry is
lifted due to the different size of triangles (𝑎 and 𝑎′).
Two types of intra-triangular hopping (𝑡′ and 𝑡) and
one type of inter-triangular hopping (𝑡1) are consid-
ered in the TB Hamiltonian, as shown in Fig. 1(e).
The 𝑏-Ruby lattice bears the same point group (𝐷3ℎ)
as the 𝑚-Ruby lattice but different locations of mirror
planes, as shown in Figs. 1(h) and 1(i). Such a dif-
ference leads to a different electronic band structure.
The Dirac cones are gaped in the 𝑏-Ruby lattice, as
shown in Fig. 2(e), indicating that the mirror symme-
try in the 𝑏-Ruby is incapable of preserving the Dirac
cones. Notably, the mirror symmetry is identical to
that of the graphene-like boron nitride lattice (g-BN).
Compared to graphene, the spatial inversion symme-
try is removed in the g-BN lattice, opening a band
gap at the Dirac points. In this sense, the 𝑏-Ruby lat-
tice can be regarded as an analog of the g-BN lattice.
The band gap in the 𝑏-Ruby lattice offers a promising
strategy of regulating the electronic band structure
of Ruby lattice to fulfill the requirement of electronic
devices where a band gap is needed.

To investigate the topological properties of these
lattices, an intrinsic SOC term is introduced in the
Hamiltonian

𝐻 = 𝐻0 + 𝑖
∑︁
⟨𝑖𝑗⟩

𝜆𝑖𝑗𝑣𝑖𝑗𝑐
+
𝑖 𝜎𝑧𝑐𝑗 +H.c., (5)

where 𝜆𝑖𝑗 represents the strength of SOC, 𝑣𝑖𝑗 = 𝑑1𝑖𝑗 ×
𝑑2𝑖𝑗 = ±1, 𝑑1𝑖𝑗 and 𝑑2𝑖𝑗 are the nearest neighbor lattice
vectors connecting sites 𝑖 and 𝑗. For simplification,
we only consider the SOC between same spin states
within the triangles, as shown in Fig. 1. In fact, the
simplified SOC item does not give crucial influence on
the topology of the model, as shown in Fig. S1 in the
Supporting Information. Similar to the case of undis-
torted Ruby lattice, the Dirac cones of the 𝑖-Ruby and

𝑚-Ruby lattices are gaped by SOC effect. The energy
degeneracy at the 𝛤 point was also lifted. The topo-
logical properties of these lattices can be verified from
the non-zero topological invariants. Here, we calculate
the Chern number (also known as the TKNN number)
of the lattice using the Kubo formula:[33]

𝐶 =
1

2𝜋

∫︁
BZ

∑︁
𝑛

𝑓𝑛𝛺𝑛(𝑘)𝑑
2𝑘, (6)

with

𝛺𝑛(𝑘) = −
∑︁
𝑛′ ̸=𝑛

2Im
⟨𝛹𝑛𝑘|𝜐𝑥|𝛹𝑛′𝑘⟩⟨𝛹𝑛′𝑘|𝜐𝑦|𝛹𝑛𝑘⟩

(𝜀𝑛′𝑘 − 𝜀𝑛𝑘)
,

where 𝛹𝑛𝑘 and 𝜀𝑛𝑘 are the eigenstate and eigenvalue
of the band 𝑛, respectively; 𝑓𝑛 is the Fermi distri-
bution function, and 𝑣 is the velocity operator. The
total Chern numbers of the bands below the Dirac
point are labeled in Fig. 4. Clearly, both 𝑖-Ruby and
𝑚-Ruby lattices have the Chern number of −1, indi-
cating that the gaps opened at the Dirac point due to
SOC are topologically nontrivial. This is quite similar
to the cases of honeycomb lattice[1−3] and Kagome
lattice,[19−22] where SOC opens a topologically non-
trivial band gap at the Dirac point. For 𝑎-Ruby and
𝑏-Ruby lattices, however, the band gap opened up at
the Dirac point due to the absence of spatial inversion
symmetry is topologically trivial under a weak SOC
strength, similar to the case of BN honeycomb lattice.

The topological properties of the lattices can also
be verified from the edge states of the nanoribbons
with half-infinite width. We have calculated the elec-
tronic band structures of these nanoribbons according
to the TB Hamiltonians, as plotted in Fig. 5. For the
𝑖-Ruby and 𝑚-Ruby lattices, two edge bands within
the band gap connect the top and bottom bulk bands
and intersect at the 𝛤 point, in agreement with the
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Chern number 𝐶 = −1, which is similar to the case
of perfect Ruby lattice. For the 𝑎-Ruby and 𝑏-Ruby
lattices, however, the edge bands have no intersection

within the band gap, implying that the band gap is
topological trivial, in consistence with the zero Chern
number.
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Fig. 4. The TB electronic band structures of (a) Ruby, (b) 𝑖-Ruby, (c) 𝑚-Ruby, (d) 𝑎-Ruby, (e) 𝑏-Ruby, and Star
lattices (f). The blue solid lines and red dotted lines represent the bands without and with SOC. The SOC strength
is set to 𝜆 = 0.1𝑡 (this value would be smaller in 𝑎, 𝑏-Ruby). The hopping parameters are the same as those of
Fig. 2. The Chern number 𝐶 of the bands below the Dirac points is also presented in the figure.
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Fig. 5. The electronic band structures of the nanoribbons of (a) perfect Ruby, (b) 𝑖-Ruby, (c) 𝑚-Ruby, (d) 𝑎-Ruby,
(e) 𝑏-Ruby, and (e) Star lattices. The width of the nanoribbon is 20. The red and blue lines represent the edge
states on different sides.

From the above analysis, we can see the two path-
ways connecting Ruby lattice to Star lattice, while
preserving the Dirac cones and topologically nontriv-
ial features. One is rotating the two triangles syn-
chronously (𝑖-Ruby model) with an angle 𝜃 from 0∘
to 60∘. The mirror symmetry is broken, but the in-
version symmetry is retained in this pathway. The
other is rotating the two triangles asynchronously (𝑚-

Ruby model), one clockwise (from 0∘ to 60∘) the other
anticlockwise (from 0∘ to −60∘), in which the mirror
symmetry is preserved, but the inversion symmetry
is broken. The robust Dirac cones and topological
nontriviality along with the structural transition be-
tween Ruby and Star models offer promising strategies
to achieve exotic scenarios, such as QAHE, QSHE or
FQHE.
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Fig. 6. The numerical simulated frequency spectra of the photonic waveguides of (a) Ruby, (b) 𝑖-Ruby, (c) 𝑚-Ruby,
(d) 𝑎-Ruby, (e) 𝑏-Ruby, and (f) Star lattices. The schematic diagram of arrays of photonic waveguides on a vacuum
substrate are also drawn.

Finally, we adopt photonic waveguide systems to
demonstrate the interesting scenarios of the above-
mentioned electronic band structures. In a 2D pho-
tonic lattice, the diffraction behavior of a photon can
be expressed by the following equation analogous to
the Schrödinger equation of electrons:

− 1√︀
𝜀(𝑟)

∇2 1√︀
𝜀(𝑟)

𝐹𝑧(𝑟) =
𝜔2

𝑐2
𝐹𝑧(𝑟), (7)

where 𝜀(𝑟) is the dielectric constant which is highly
dependent on the patterns of the waveguide arrays,
𝐹𝑧(𝑟) =

√︀
𝜀(𝑟)𝐸𝑧(𝑟), 𝜔 and 𝑐 are the frequency and

speed of light in vacuum. According to Bloch’s the-
orem, 𝐹𝑧(𝑟) can be expanded by the normalized or-
thogonal field 𝜓𝑖(𝑟), which is assumed to localize at
the site 𝑖,

𝐹𝑧(𝑟) =
∑︁
𝑅

𝑒𝑖𝑘·𝑅
6∑︁

𝑖=1

𝑐𝑖𝜓𝑖(𝑟 −𝑅), (8)

where 𝑐𝑖 is the coefficient of 𝜓𝑖(𝑟). Equation (7) can
be reduced to a linear homogeneous equation set of
𝑐𝑖, in analogy to the TB strategy. Therefore, as the
waveguide arrays are aligned in the pattern similar to

the lattice models, the photonic band structures 𝜔(𝑘)
will reflect the properties of the TB band structures of
the lattices. According to the plane-wave method,[34]
we can convert Eq. (7) to the reciprocal space as fol-
lows:∑︁

𝐺′

𝜀−1(𝐺−𝐺′)|𝑘 +𝐺′|2𝐸(𝐺′) =
𝜔2

𝑐2
𝐸(𝐺) (9)

to get the photonic band structures 𝜔(𝑘), where 𝐺
represents reciprocal vectors, 𝜀(𝐺) and 𝐸(𝐺) are the
Fourier transforms of 𝜀(𝑟) and 𝐸(𝑟), respectively.
Here, we arrange the waveguide arrays according to
the lattice models described above. The distance be-
tween the two adjacent waveguides is 11µm, and the
radius of each waveguide is 2µm. The waveguide
and substrate are, respectively, set to silicon and vac-
uum. Each waveguide retains only one mode. Exper-
imentally, these photonic waveguide systems can be
achieved by the femtosecond direct writing method.[35]

The photonic band structures of the six photonic
waveguide systems constructed according to perfect
Ruby, 𝑖-Ruby, 𝑚-Ruby, 𝑎-Ruby, 𝑏-Ruby and Star lat-
tice models are plotted in Fig. 6. We can see the Dirac
cones of the perfect Ruby, 𝑖-Ruby, 𝑚-Ruby and Star
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lattices and the band gaps opened at the Dirac points
of 𝑎-Ruby and 𝑏-Ruby lattices. The photonic waveg-
uide systems are rather complicated compared with
the TB models of these lattices. However, the Dirac
cones and the band gaps of the photonic band struc-
ture are consistent with the results of the TB models,
confirming the robust Dirac cones of these distorted
Ruby lattices. These results also provide a useful guid-
ance for the design of photonic waveguide systems
with desired photonic properties.

In summary, we have proposed four types of dis-
torted Ruby lattices with different symmetries to
bridge the gap between Ruby lattice and Star lat-
tice. On the basis of tight-binding Hamiltonians,
we demonstrate that the Dirac cones and the asso-
ciated topological properties of the perfect Ruby and
Star lattices can be well preserved in 𝑖-Ruby and 𝑚-
Ruby lattices, which are protected by spatial inver-
sion symmetry and mirror symmetries, respectively.
The Dirac cones found in the non-centrosymmetric
𝑚-Ruby broaden the scope of the 2D Dirac materials.
Band gap appears at the Dirac points in the 𝑎-Ruby
lattice where both inversion and mirror symmetries
are lifted. The 𝑏-Ruby lattice can be regarded as an
analog of the BN honeycomb lattice, in which the ab-
sence of spatial inversion symmetry opens band gaps
at the Dirac points. The lattice-symmetry-dependent
electronic band structures are also verified in photonic
waveguide systems. The robust Dirac cones in 𝑖-Ruby
and 𝑚-Ruby lattices and the tunable band gaps of the
𝑎-Ruby and 𝑏-Ruby lattices offer promising models for
2D topological insulators and valleytronics materials
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SI. Tight-Binding Hamiltonians  
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Hereafter, a and b represent the side length of the regular triangle and distance 

between adjacent regular triangles of the perfect Ruby lattice, as shown in Fig. 2(a) of 

the main text. Only half of the matrix for simplification is presented in the 

Hamiltonian matrix. The whole matrix is filled to ensure a Hermitian matrix. 

 

m-Ruby lattice 

 

𝐻0
𝑚𝑅  𝒌 = −𝑡

 

 
 
 
 

0 𝑒𝑖𝜑12 𝑒𝑖𝜑13 𝜇𝑒𝑖𝜑14 𝑣𝑒𝑖𝜑15 0

0 𝑒𝑖𝜑23 0 𝜇𝑒𝑖𝜑25 𝑣𝑒𝑖𝜑26

0 𝑣𝑒𝑖𝜑34 0 𝜇𝑒𝑖𝜑36

0 𝑒𝑖𝜑45 𝑒𝑖𝜑46

0 𝑒𝑖𝜑56

0  

 
 
 
 

          (S2) 

with 𝑡1 = 𝜇𝑡, 𝑡1
′ = 𝜈𝑡, 

𝜑12 = −𝑎𝑠𝑖𝑛  
𝜋

6
− 𝜃 𝑘𝑥 − 𝑎𝑐𝑜𝑠  

𝜋

6
− 𝜃 𝑘𝑦  , 

𝜑13 = 𝑎𝑠𝑖𝑛  
𝜋

6
+ 𝜃 𝑘𝑥 − 𝑎𝑐𝑜𝑠  

𝜋

6
+ 𝜃 𝑘𝑦 , 

𝜑14 =  −
𝑎

2
−

 3𝑏

2
+

 3

3
𝑎𝑐𝑜𝑠  

𝜋

6
− 𝜃 +

 3

3
𝑎𝑠𝑖𝑛𝜃 𝑘𝑥

+  
 3𝑎

6
+

𝑏

2
+

 3

3
𝑎𝑠𝑖𝑛  

𝜋

6
− 𝜃 −

 3

3
𝑎𝑐𝑜𝑠𝜃 𝑘𝑦 , 

𝜑15 =  
𝑎

2
+

 3𝑏

2
−

 3

3
𝑎𝑐𝑜𝑠  

𝜋

6
+ 𝜃 +

 3

3
𝑎𝑠𝑖𝑛𝜃 𝑘𝑥

+  
 3𝑎

6
+

𝑏

2
+

 3

3
𝑎𝑠𝑖𝑛  

𝜋

6
+ 𝜃 −

 3

3
𝑎𝑐𝑜𝑠𝜃 𝑘𝑦 , 

𝜑23 = 𝑎𝑐𝑜𝑠𝜃𝑘𝑥 + 𝑎𝑠𝑖𝑛𝜃𝑘𝑦 , 



S3 

 

𝜑25 =  
2 3

3
𝑎𝑐𝑜𝑠  

𝜋

3
− 𝜃 −

 3

3
𝑎 − 𝑏 𝑘𝑦 , 

𝜑26 =  −
𝑎

2
−

 3𝑏

2
+

 3

3
𝑎𝑐𝑜𝑠  

𝜋

6
+ 𝜃 −

 3

3
𝑎𝑠𝑖𝑛𝜃 𝑘𝑥

+  
 3𝑎

6
+

𝑏

2
+

 3

3
𝑎𝑠𝑖𝑛  

𝜋

6
+ 𝜃 −

 3

3
𝑎𝑐𝑜𝑠𝜃 𝑘𝑦 , 

𝜑34 =  
2 3

3
𝑎𝑐𝑜𝑠  

𝜋

3
+ 𝜃 −

 3

3
𝑎 − 𝑏 𝑘𝑦 , 

𝜑36 =  
𝑎

2
+

 3𝑏

2
−

 3

3
𝑎𝑐𝑜𝑠  

𝜋

6
− 𝜃 −

 3

3
𝑎𝑠𝑖𝑛𝜃 𝑘𝑥

+  
 3𝑎

6
+

𝑏

2
+

 3

3
𝑎𝑠𝑖𝑛  

𝜋

6
− 𝜃 −

 3

3
𝑎𝑐𝑜𝑠𝜃 𝑘𝑦 , 

𝜑45 = −𝑎𝑐𝑜𝑠𝜃𝑘𝑥 + 𝑎𝑠𝑖𝑛𝜃𝑘𝑦 , 

𝜑46 = −𝑎𝑠𝑖𝑛  
𝜋

6
+ 𝜃 𝑘𝑥 − 𝑎𝑐𝑜𝑠  

𝜋

6
+ 𝜃 𝑘𝑦 , 

𝜑56 = 𝑎𝑠𝑖𝑛  
𝜋

6
− 𝜃 𝑘𝑥 − 𝑎𝑐𝑜𝑠  

𝜋

6
− 𝜃 𝑘𝑦 . 

 

a-Ruby lattice 

 

𝐻0
𝑎𝑅 𝒌 = −𝑡

 

 
 
 
 

0 𝑒𝑖𝜑12 𝑒𝑖𝜑13 𝜇𝑒𝑖𝜑14 𝑣𝑒𝑖𝜑15 𝜉𝑒𝑖𝜑16

0 𝑒𝑖𝜑23 𝜉𝑒𝑖𝜑24 𝜇𝑒𝑖𝜑25 𝑣𝑒𝑖𝜑26

0 𝑣𝑒𝑖𝜑34 𝜉𝑒𝑖𝜑35 𝜇𝑒𝑖𝜑36

0 𝑒𝑖𝜑45 𝑒𝑖𝜑46

0 𝑒𝑖𝜑56

0  

 
 
 
 

    (S3) 

with  𝑡1 = 𝜇𝑡, 𝑡1
′ = 𝜈𝑡, 𝑡2 = 𝜉𝑡, 

𝜑12 = −𝑎𝑠𝑖𝑛  
𝜋

6
− 𝜃 𝑘𝑥 − 𝑎𝑐𝑜𝑠  

𝜋

6
− 𝜃 𝑘𝑦 , 

𝜑13 = 𝑎𝑠𝑖𝑛  
𝜋

6
+ 𝜃 𝑘𝑥 − 𝑎𝑐𝑜𝑠  

𝜋

6
+ 𝜃 𝑘𝑦 , 

𝜑14 =  −
 3𝑏

2
+

 3

3
𝑎𝑠𝑖𝑛𝜃 𝑘𝑥 +  

 3𝑎

3
+

𝑏

2
−

 3

3
𝑎𝑐𝑜𝑠𝜃 𝑘𝑦 , 
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𝜑15 =  
 3𝑏

2
+

 3

3
𝑎𝑠𝑖𝑛𝜃 𝑘𝑥 +  

 3𝑎

3
+

𝑏

2
−

 3

3
𝑎𝑐𝑜𝑠𝜃 𝑘𝑦 , 

𝜑16 =  −
𝑎

2
−

 3𝑏

2
+

 3

3
𝑎𝑠𝑖𝑛𝜃 𝑘𝑥 +  −

 3𝑎

6
+

𝑏

2
−

 3

3
𝑎𝑐𝑜𝑠𝜃 𝑘𝑦 , 

𝜑23 = 𝑎𝑐𝑜𝑠𝜃𝑘𝑥 + 𝑎𝑠𝑖𝑛𝜃𝑘𝑦  , 

𝜑24 =  
𝑎

2
+

 3

3
𝑎𝑠𝑖𝑛  

𝜋

3
− 𝜃  𝑘𝑥 +  −

 3𝑎

6
− 𝑏 +

 3

3
𝑎𝑐𝑜𝑠  

𝜋

3
− 𝜃  𝑘𝑦 , 

𝜑25 =  −
𝑎

2
+

 3

3
𝑎𝑠𝑖𝑛  

𝜋

3
− 𝜃  𝑘𝑥 +  −

 3𝑎

6
− 𝑏 +

 3

3
𝑎𝑐𝑜𝑠  

𝜋

3
− 𝜃  𝑘𝑦 , 

𝜑26 =  −
𝑎

2
−

 3𝑏

2
+

 3

3
𝑎𝑠𝑖𝑛  

𝜋

3
− 𝜃  𝑘𝑥 +  −

 3𝑎

6
+

𝑏

2
+

 3

3
𝑎𝑐𝑜𝑠  

𝜋

3
− 𝜃  𝑘𝑦 , 

𝜑34 =  
𝑎

2
−

 3

3
𝑎𝑠𝑖𝑛  

𝜋

3
+ 𝜃  𝑘𝑥 +  −

 3𝑎

6
− 𝑏 +

 3

3
𝑎𝑐𝑜𝑠  

𝜋

3
+ 𝜃  𝑘𝑦 , 

𝜑35 =  
 3𝑏

2
−

 3

3
𝑎𝑠𝑖𝑛  

𝜋

3
+ 𝜃  𝑘𝑥 +  

 3𝑎

3
+

𝑏

2
+

 3

3
𝑎𝑐𝑜𝑠  

𝜋

3
+ 𝜃  𝑘𝑦 , 

𝜑36 =  
𝑎

2
+

 3𝑏

2
−

 3

3
𝑎𝑠𝑖𝑛  

𝜋

3
+ 𝜃  𝑘𝑥 +  −

 3𝑎

6
+

𝑏

2
+

 3

3
𝑎𝑐𝑜𝑠  

𝜋

3
+ 𝜃  𝑘𝑦  , 

𝜑45 = −𝑎𝑘𝑥  , 

𝜑46 = −  
𝑎

2
𝑘𝑥 −

 3𝑎

2
𝑘𝑦  , 

𝜑56 =  
𝑎

2
𝑘𝑥 −

 3𝑎

2
𝑘𝑦 . 

 

b-Ruby lattice 

 

𝐻0
𝑏𝑅 𝒌 = −𝑡

 

 
 
 
 

0 𝑣𝑒𝑖𝜑12 𝑣𝑒𝑖𝜑13 𝜇𝑒𝑖𝜑14 𝜇𝑒𝑖𝜑15 0

0 𝑣𝑒𝑖𝜑23 0 𝜇𝑒𝑖𝜑25 𝜇𝑒𝑖𝜑26

0 𝜇𝑒𝑖𝜑34 0 𝜇𝑒𝑖𝜑36

0 𝑒𝑖𝜑45 𝑒𝑖𝜑46

0 𝑒𝑖𝜑56

0  

 
 
 
 

         (S4)   

with  𝑡1 = 𝜇𝑡, 𝑡′ = 𝜈𝑡, 
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𝜑12 = −
𝑎′

2
𝑘𝑥 −

 3𝑎′

2
𝑘𝑦 , 

𝜑13 =
𝑎′

2
𝑘𝑥 −

 3𝑎′

2
𝑘𝑦 , 

𝜑14 = −
 3𝑏

2
𝑘𝑥 +  

 3𝑎

3
+

𝑏

2
−

 3

3
𝑎′ 𝑘𝑦 , 

𝜑15 =
 3𝑏

2
𝑘𝑥 +  

 3𝑎

3
+

𝑏

2
−

 3

3
𝑎′ 𝑘𝑦 , 

𝜑23 = 𝑎′𝑘𝑥  

𝜑25 =
1

2
 𝑎′ − 𝑎 𝑘𝑥 +  

 3

6
𝑎′ −

 3

6
𝑎 − 𝑏 𝑘𝑦 , 

𝜑26 =  −
𝑎

2
−

 3𝑏

2
+

𝑎′

2
 𝑘𝑥 +  −

 3𝑎

6
+

𝑏

2
+

 3

6
𝑎′ 𝑘𝑦 , 

𝜑34 =
1

2
 𝑎 − 𝑎′ 𝑘𝑥 +  

 3

6
𝑎′ −

 3

6
𝑎 − 𝑏 𝑘𝑦 , 

𝜑36 =  
𝑎

2
+

 3𝑏

2
−

𝑎′

2
 𝑘𝑥 +  −

 3𝑎

6
+

𝑏

2
+

 3

6
𝑎′ 𝑘𝑦 , 

𝜑45 = −𝑎𝑘𝑥 , 

𝜑46 = −
𝑎

2
𝑘𝑥 −

 3𝑎

2
𝑘𝑦 , 

𝜑56 =
𝑎

2
𝑘𝑥 −

 3𝑎

2
𝑘𝑦  . 

 

SII. Spin-Orbit Coupling (SOC) of i-Ruby Lattice 

   In the main text, only one spin channel was considered. So spin-splitting scenario 

was not displaced. Here, we considered the SOC of the two spin channels in the 

electronic band structure calculations of the i-Ruby lattice and the nanoribbons, as 

shown in Fig. S1. Clearly, the degeneracy of the two spins is lifted in the electronic 

band structures of i-Ruby lattice, as shown in Fig.S1(a). For the i-Ruby nanoribbon, 

two topological edge bands emerge within the band gap due to the SOC, 

demonstrating the QSHE characteristics, as shown in Fig. S1(b). The topological 
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features revealed in in the one-spin strategy are well-reproduced in the two-spin 

strategy.  

 

 

 

 

 

 

 

 

Fig. S1 The electronic bans structures of (a) i-Ruby lattice and (b) the nanoribbons 

with SOC.  

 

SIII. Effects of Hopping Amplitude on Energy Bands 

We calculated the electronic band structures of i-Ruby lattice with different t1/t0 

ratios ranging from 0 to 2.0 to uncover the possible quantum phase transition, as 

shown in Fig. S2. For t1/t0 = 0, all the bands become dispersionless, because the 

hoping between triangles disappears, leading to highly-localize electronic states. With 

the increase of t1/t0, the bands become more dispersive. The Fermi velocity ( F ) of 

the Dirac bands increases with the increases of t1/t0, as shown in Fig. S2(d). Moreover, 

the t1/t0 ratio affects the band degeneracy. We defined two band gaps, 1E  and 2E  

to describe the variation of the band degeneracy. From Fig. S2, we can see that 

1 0E  ; 2 =0E   as t1/t0 < 1 and 1=0E ; 2 0E   as t1/t0 > 1. At the critical point of 

t1/t0 = 1, 1 2= =0E E  , leads to a three-fold (six-fold considering spins) flat band 

along the Г-M direction, as shown in Fig. S2(b). 
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Fig. S2 The electronic band structures of i-Ruby lattice with (a) t1/t0=0.8; (b) t1/t0=1.0; 

(c) t1/t0 = 1.2. (d) The variation of Fermi velocity, 1E  and 2E  as a function of 

t1/t0. 
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