Information Retrieval (IR)

- The user has an **information need**.
- The user provides a **query** that describes the information need.
- The IR system retrieves a set of documents from a **corpus** (document collection) that are believed to be **relevant**.
- The documents are often ranked based on the likelihood that they are relevant.

IR Tasks

- The most familiar task is **ad-hoc retrieval**: user provides a query expressing an information need and system returns relevant documents.
- **Text Classification/Categorization**: assign topic labels to documents (presumption of ongoing information need).
- **Text Filtering/Routing**: flag documents according to a profile either for routing (e.g., to an appropriate person) or for removal (e.g., spam, porn filtering).
- **Clustering**: organize a document collection by grouping similar or related documents.
 - **Information Visualization** is a growing need to visually represent the contents of extremely large document collections.
Types of Documents

• Unstructured: natural language text
 – There is linguistic structure, but little (if any) surface-level document structure.

• Semi-structured: some natural language text, but also some surface-level document structure.
 – Examples: resumes, seminar announcements

• Structured: data whose meaning is derived from the way it is organized
 – Databases are a common form of structured data.

Semi-Structured Text Examples

Seminar Announcement

Laura Petitte
Department of Psychology
McGill University
Thursday, May 4, 1995
12:00 pm
Baker Hall 355

Name: Dr. Jeffrey D. Hermes
Affiliation: Department of AutoImmune Diseases
Research & Biophysical Chemistry, Merck Research Laboratories
Title: “MHC Class II: A Target for Specific Immunomodulation of the Immune Response”
Host/e-mail: Robert Murphy, murph@a.crf.cmu.edu
Date: Wednesday, May 3, 1995
Time: 3:30 p.m.
Place: Mellon Institute Conference Room

Boolean Keyword Systems

• The user provides a list of keywords that are likely to appear in relevant documents.
 – Example: to find documents about conspiracy theories involving the assassination of JFK, the user might list: JFK, conspiracy, assassination

• By default, most systems use a Boolean and operator, but advanced search options usually support additional Boolean operators.
 – Example: (AND (OR(JFK,Kennedy), conspiracy, (OR(assassination,murder,shooting)))

Major Issues in IR

• Polysemy: many words have multiple meanings.

• Synonymy: many words can mean the same thing.

• Size/Speed: IR systems must process huge volumes of text, with instantaneous response time.

• Broad Coverage: IR systems must be able to handle queries about any topic whatsoever.
Basic Evaluation Measures

- **Precision** = percentage of returned documents that are truly relevant.
 - Intuition: hit rate. How often is the system correct?

- **Recall** = percentage of all relevant documents that the system finds.
 - Intuition: coverage. How much of the desired material is found?

Inverted Index

- Most IR systems use an **inverted index** *(inverted file)* to represent the documents in the collection.
 - Each document is **tokenized** to identify individual **terms** (normalized tokens).
 - A dictionary is created from the terms, and each term is linked to a list of documents that contain the term *(postings)*.

Inverted Index Example

<table>
<thead>
<tr>
<th>Term</th>
<th>Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assassination</td>
<td>d1, d5, d21, d73, d304, d511…</td>
</tr>
<tr>
<td>Conspiracy</td>
<td>d3, d4, d7, d54, d73, d288…</td>
</tr>
<tr>
<td>JFK</td>
<td>d2, d21, d50, d73, d183, d288…</td>
</tr>
<tr>
<td>Kennedy</td>
<td>d2, d5, d66, d89, d214, d288…</td>
</tr>
</tbody>
</table>

The inverted index may also contain:
- frequency count of each term
- positional information

Stop Words

- Most IR systems use a **stop list** *(stop words)*, which typically consist of closed class words that do not contain much semantic information.
 - Stop words are not included in the inverted index, which dramatically reduces its size.

Typical stop words:
- Articles: a, an, the
- Prepositions: of, to, from, by, with, for, at, in…
- Modals: would, could, should, can, will, must… etc.
Disadvantages of Stop Words

- Common strings can be used in uncommon ways.
 - Example: "the" can be a Vietnamese name
- Stop words can be crucial parts of a lexicalized phrase, title, or quote.
 - Example: "to be or not to be"
- Some stopwords, such as prepositions, can provide important information about relationships.
- Disk space is much cheaper than it used to be, so saving space may not be as important as it once was.

Stemming

- Many IR systems use **stemming** to match query terms with morphological variants in the documents.
 - Example:
 - assassinate
 - assassinated
 - assassinates
 - assassinating
 - assassination

Problems observed with the Porter Stemmer

<table>
<thead>
<tr>
<th>Incorrect Conflation</th>
<th>Errors of Omission</th>
</tr>
</thead>
<tbody>
<tr>
<td>organization</td>
<td>European</td>
</tr>
<tr>
<td>doing</td>
<td>analysis</td>
</tr>
<tr>
<td>generalization</td>
<td>matrices</td>
</tr>
<tr>
<td>numerical</td>
<td>noise</td>
</tr>
<tr>
<td>policy</td>
<td>sparse</td>
</tr>
<tr>
<td>university</td>
<td>explain</td>
</tr>
<tr>
<td>easy</td>
<td>resolve</td>
</tr>
<tr>
<td>addition</td>
<td>triangle</td>
</tr>
<tr>
<td>negligible</td>
<td>urgency</td>
</tr>
<tr>
<td>execute</td>
<td>cylinder</td>
</tr>
<tr>
<td>organ</td>
<td>Europe</td>
</tr>
<tr>
<td>do</td>
<td>analyze</td>
</tr>
<tr>
<td>generic</td>
<td>matrix</td>
</tr>
<tr>
<td>numerous</td>
<td>noisy</td>
</tr>
<tr>
<td>police</td>
<td>sparsity</td>
</tr>
<tr>
<td>universe</td>
<td>explanation</td>
</tr>
<tr>
<td>easily</td>
<td>resolution</td>
</tr>
<tr>
<td>additive</td>
<td>triangular</td>
</tr>
<tr>
<td>negligent</td>
<td>urgent</td>
</tr>
<tr>
<td>executive</td>
<td>cylindrical</td>
</tr>
</tbody>
</table>

IR is not just web search!

- There are some very important real-world challenges! For example:
 - Legal Search. Some real Westlaw information needs:
 - Information on the legal theories involved in preventing the disclosure of trade secrets by employees formerly employed by a competing company.
 - Cases about the host's responsibility for drunk guests.
 - Question Answering. NLP meets IR: most people really want computers to be able to return a specific answer to a question, not a set of documents.
 - Current IR systems do reasonably well with precision (for simple queries), but recall is still a major problem!