
Projections for E�cient Document ClusteringHinrich Sch�utze, Craig SilversteinXerox Palo Alto Research Center3333 Coyote Hill RoadPalo Alto, CA 94304email: schuetze@parc.xerox.com, csilvers@cs.stanford.eduURL: ftp://parcftp.xerox.com/pub/qca/papersAbstractClustering is increasing in importance, but linear- and evenconstant-time clustering algorithms are often too slow forreal-time applications. A simple way to speed up cluster-ing is to speed up the distance calculations at the heart ofclustering routines. We study two techniques for improv-ing the cost of distance calculations, LSI and truncation,and determine both how much these techniques speed upclustering and how much they a�ect the quality of the res-ulting clusters. We �nd that the speed increase is signi�cantwhile | surprisingly | the quality of clustering is not ad-versely a�ected. We conclude that truncation yields clustersas good as those produced by full-pro�le clustering whileo�ering a signi�cant speed advantage.1 IntroductionClustering is becoming increasingly widespread: It is �nd-ing applications in browsing [8, 7], in improving the perform-ance of similarity search tools [16, 19], and in automaticallygenerating thesauri [5, 6]. In query analysis, clustering hasbeen used for transforming a free-text query into a fuzzyBoolean constraint [25]. The popularity of Yahoo! demon-strates the potential of categorization for presenting inform-ation on the World Wide Web. Clustering can only approx-imate a manual categorization like Yahoo!'s, but in manycases such an approximation is still bene�cial while at thesame time being cheap to install.Many of these clustering applications demand rapid re-sponse times while utilizing data sets too large for linear-time clustering algorithms. Even constant-time clusteringalgorithms such as constant-time Scatter/Gather [7] can, be-cause of large constants, be too slow for very large data sets.It is possible to decrease the constants used in cluster-ing routines. We concentrate on doing so in the context ofclustering text documents, which we consider as vectors ofterms. The bottleneck in clustering text documents is calcu-lating the distance between term vectors. This calculationtakes time proportional to the number of distinct terms inthe smaller document. One obvious way to speed up cluster-

ing, then, is to project each document onto a small subspaceof the total term space, thereby reducing the average numberof terms in each document. For another application of clus-tering, word sense disambiguation, it has been shown thatprojection onto a smaller subspace does not a�ect perform-ance [24]. This is further motivation for exploring projectionfor clustering in information retrieval.There are two di�erent approaches to projecting docu-ments. One is a local method, where for each document weexcise a number of \unimportant" terms. This type of pro-jection, called truncation, is called local because each doc-ument is projected onto a di�erent subspace. In practice,we only truncate cluster centroids,1 which are often ratherdense and thus bene�t greatly from truncation. Documentvectors are usually quite sparse and bene�t minimally fromthe sparsi�cation provided by truncation.The alternative to local projection is global projection,in which the terms to delete are chosen �rst, and then theseterms are deleted from each document. This type of pro-jection is called dimension reduction. The disadvantage ofdimension reduction is that it does not adapt to the uniquecharacteristics of each document; its advantage is that itbetter preserves the ability to compare even dissimilar doc-uments, since all documents undergo an identical projection.It is possible to preprocess the documents before project-ing them. One common preprocessing step for truncation isweighting, whereby each term in a document is assigned aweight based on its frequency in that document and, pos-sibly, in other documents. Usually, terms with the lowestweight are then deleted. There is no equally obvious pre-processing step for dimension reduction, but an increasinglypopular step has been to map the documents from term spaceto an orthonormal space by means of Latent Semantic Index-ing (LSI), an application of Singular Value Decomposition(SVD) to this problem. An advantage of the orthonormalspace (which we call \LSI space") is that the dimensionsare ordered, in that projecting the set of documents ontothe d lowest dimensions is guaranteed to have, among allpossible projections to a d dimensional space, the lowestpossible least-square distance to the original documents. Inthis sense, LSI �nds an optimal solution to dimensionalityreduction. See [9] for a further discussion of LSI and [1] fora description of SVD and the algorithms we use to computeit. There has been a fair amount of work on comparing LSIand term-based distance measures, but this work has beenin the context of similarity search in ad hoc retrieval rather1A cluster's centroid is the vector sum of its members.



than in clustering. In the similarity search context, dimen-sion reduction via LSI has proven to be e�ective in terms ofretrieval performance [9, 11]. Truncation, on the other hand,is not interesting as an optimization technique for speed insimilarity search, since queries generally are shorter than 20key words2 and access to the inverted index of documents isindependent of the number of terms per document.While both similarity search and clustering require dis-tance measurements between text objects (either queries ordocuments) represented as vectors, the goal in each case isdi�erent. This is because the two problems di�er substan-tially in how much they depend on the distance measure-ment. Similarity search is very sensitive to the distance |or rather, similarity | formula used.3 Even the slightestmodi�cation of the distance calculation can swap the relat-ive positions of two documents with respect to the query,a�ecting the quality of the search result. Clustering, on theother hand, is less sensitive to the distance calculation. Onlyat the fringes of the clusters, where clustering decisions arealready somewhat arbitrary, is a slightly perturbed distancecalculation likely to a�ect the cluster in which a document isplaced. Therefore, we might hope that projection techniquesspeed up clustering with a tolerable deterioration of clusterquality.Projecting documents is the simplest way to speed up thedistance calculation, but it is not the only one. Cohen andLewis have looked at using a modi�ed matrix multiplicationroutine for calculating approximate Euclidean distance [3].Such an approach can be used in conjunction with documentprojection but may be more costly. Regardless, the factthat the algorithms community is expressing interest in thisproblem is an indication of its increasing importance.In Section 2 we describe the projection techniques eval-uated in this paper. Section 3 describes the experimentalcontext used to evaluate these methods. We present andevaluate the results in Section 4. Finally, we recommend aspeci�c projection technique in Section 5.2 Projection TechniquesAt its heart, the clustering of text documents consists ofclustering m vectors in an n-dimensional space, where m isthe number of documents and n is the number of terms. Fora given vector d, the value dt is the number of times term toccurs in document d. Clearly, most document vectors aresparse, and under a sparse representation each vector hassize in line with the document length.We de�ne projecting to be the act of converting some non-zero values of dt to 0, possibly �rst modifying the vector din an arbitrary way. If we choose not to convert any value,then we obtain the trivial projection, called full for \fullpro�les."The simplest non-trivial projection is truncation. Trun-cation works as follows: consider, for each vector d, the c2An exception is the very long queries that may be generated viarelevance feedback and pseudo-feedback. In this case, truncation isnot just an e�ciency tool but, as discussed in [2], is also probablynecessary to maintain the quality of the search result set.3We use the concepts of similarity and distance interchangeablyhere since Euclidean distance and correlation coe�cient produce thesame ranking for normalized vectors:���~a�~b���2 = X(ai � bi)2 =X a2i � 2X aibi +X b2i= 1� 2corr(~a;~b) + 1 = 2(1� corr(~a;~b))

largest components of the vector. (Note that the compon-ents chosen are di�erent for each vector.) Keep these �xed,and set all other components to 0. As is common, we weightthe vector d before truncation. (One reason weighting iscommon is that it has been shown to give improved res-ults for similarity search [23].) The weighting technique weuse is term frequency weighting, in which we replace dt by1 + log dt. We call this technique TF weighting to c terms,or TF-c.It is common to weight based on Inverse Document Fre-quency (IDF) in addition to term frequency, but we chosenot to do so after preliminary studies indicated IDF weight-ing slightly degraded cluster quality. IDF weighting down-weights frequent words and upweights rare words, whichmay be useful for similarity search but complicates clus-tering since clusters tend to be formed based on patterns offrequent words.We test two instantiations of TF-c, TF-50 and TF-20.TF-50 is similar to the truncation method recommendedin [7]. (Cutting et al. also truncate to 50 terms, but theyuse pdt for term frequency weighting instead of 1 + log dt.)We test TF-20 to explore how a substantial reduction inthe truncation constant a�ects time e�ciency and clusteringe�ectiveness.In addition to truncation, we consider LSI, a global pro-jection scheme. In LSI, we convert the documents to LSIspace and take the d lowest dimensions of each document.This dimension reduction method is called LSI dimensionreduction to d dimensions, or LSI-d.4 We call the d in LSI-d, and the c in TF-c, the truncation constant. Nevertheless,we reserve the term \truncation" for the term truncationmethods TF-c to avoid confusing these methods with theLSI methods.We test three instantiations of LSI-d, LSI-150, LSI-50,and LSI-20. The constant 150 is typical for the range oftruncation constants in which LSI is competitive with | orsuperior to | term-based similarity search [9, 11, 12]. Wetest the two lower truncation constants, LSI-20 and LSI-50,to explore how a substantial reduction in the constant a�ectstime e�ciency and clustering e�ectiveness.3 Experimental DesignWe would like to compare projection techniques both ac-cording to time e�ciency and according to clustering e�ect-iveness. It is easy to measure time e�ciency by recordingthe CPU time for the various techniques when embedded ina �xed clustering algorithm.Measuring clustering e�ectiveness is harder. One meas-ure, used in probabilistic clustering methods such as EMclustering [10], is the probability that the vectors are gener-ated by a particular cluster model. Another measure, usedin group-average agglomerative clustering, is the average dis-tance between members of a cluster. Instead of using theserather abstract measures, we base our evaluation on clusterretrieval, a measure that is closely aligned with informa-tion retrieval performance. Cluster retrieval is a retrievalstrategy based on the cluster hypothesis [18, 29, 16] whichstates that \closely associated documents tend to be relev-ant to the same requests" [28]. In cluster retrieval, insteadof ranking all documents of the collection according to simil-arity to the query, only documents in one selected cluster areranked and presented to the user. (There are several ways of4Computing the transformation matrices used in LSI is memoryintensive, so we subsampled by ignoring terms occurring in fewer than5 documents.



selecting this cluster; see below.) Cluster retrieval enhancesthe precision of ad hoc searches to the extent that relevantdocuments are concentrated in one region of document spaceand that region is well represented by the selected cluster.In order to evaluate di�erent clustering procedures viacluster retrieval, we need a set of documents; a set of quer-ies; and, for each query, an exhaustive list of the documentsrelevant to the query. To evaluate a clustering, we pick onecluster, using a method to be described below. We thenturn the cluster into a ranked list via similarity search onthat cluster.5 The quality of the clustering is then equatedwith the quality of the ranked list of the documents in theselected cluster, as measured by average precision.We evaluate the performance of each projection methodby embedding it in a �xed distance metric | Euclideandistance | and using this metric in a �xed clustering al-gorithm | Buckshot [8].6Buckshot �rst chooses a random sample of sizepn, wheren is the number of vectors to be clustered, and then clustersthis sample with an O(n2) algorithm. Hence, overall timecomplexity of this step is O(n). The algorithm used for clus-tering the sample is group-average agglomerative clustering(GAAC). GAAC initially forms a cluster out of each vectorand then in each step merges the two clusters which giverise to the lowest average distance between members. AfterGAAC has clustered the pn sample, a centroid is computedfor each cluster. In the �nal step, all n vectors are assigned tothe cluster whose centroid they are closest to. The centroidcomputation and reassignment steps have time complexityO(n), so overall complexity is O(n).Our test corpus is the Wall Street Journal subpart of theTREC-4 collection [14]. The queries we use are queries 202through 250 of that collection; these are the 49 queries usedfor ad-hoc evaluation in TREC-4. The corpus consists of74520 documents.In order to make sure that our �ndings are not based on aparticular setting of an experimental parameter, we vary sev-eral experimental conditions systematically. First, we lookat both global and local clustering to control for the size ofthe set that is to be clustered. Second, we consider two typesof information requests: long and short queries. The quer-ies (or topics) in TREC are long, but in many applicationsof information retrieval users supply much shorter queries.Finally, we also vary the way the \best" cluster is selected,using both a procedure similar to the one suggested in [16]and two automatic methods. The factors are summarized inTable 1 and described in more detail below.The scope factor describes the type of clustering. Globalclustering clusters the 74520 documents in the corpus intoabout 400 clusters. In the �rst phase of Buckshot, 400cluster centers are computed. Then all 74520 documentsare assigned to the closest cluster center. Documents fromclusters with fewer than 5 documents are assigned to theclosest surviving cluster. Thus, somewhat less than 400clusters are actually created. This procedure prevents un-usual, highly dissimilar documents from occupying their owncluster. Local clustering, on the other hand, �rst choosesthe 1000 documents that are closest to the query according tolnc.ltc weighted search. These documents are then clustered5We use lnc.ltc weighting, a form of term frequency and inversedocument frequency weighting, for similarity search [26]. We did notexperiment with other ranking algorithms, but we do not believe thatthe choice of ranking algorithm would interact with any of our exper-imental conditions, such as the size of queries, the cluster selectionmethod, or the scope of clustering.6Euclidean distance is equivalent to the more common cosine met-ric for length-normalized vectors as pointed out above.

into 5 clusters. As in global, the parameters for local areonly approximate; in particular, if there are fewer than 1000documents with non-zero similarity to the query, fewer than1000 documents will be clustered.Note that the di�erence between the global and localscope (clustering all documents vs. a selected set) shouldnot be confused with the contrast between global and localtruncation (truncating the same dimensions throughout vs.truncating di�erent dimensions in each case).The queries factor distinguishes between long and shortqueries. Long queries are taken directly from the descrip-tion �eld of the TREC topics. The short queries are mod-i�ed versions of the long queries, where each query is re-duced to a few keywords. For example, the long form ofquery 216 is as follows:What research is ongoing to reduce the e�ects ofosteoporosis in existing patients as well as pre-vent the disease occurring in those una�icted atthis time?while the short form is the single word \osteoporosis." Theaverage length of long queries is 10.8 terms, while short quer-ies average 2.3 words.The cluster selection factor describes, as promised, themethod for picking the cluster used by cluster retrieval. Thereare three levels for this factor. In the �rst, closest clusterselection, we select the cluster that is closest to the query,or more exactly, the cluster whose centroid is closest to thequery. This type of strategy has been used by [22, 4, 29, 13]among others. In feedback selection, we modify the querywith pseudo-feedback before selecting the cluster closest toit. We use the method suggested in [2]: We expand thequery with the 20 documents that are ranked at the top inan initial retrieval with the unmodi�ed query, and then wedelete all but the 50 highest weighted terms of the expandedquery. Finally, in density selection, we select the clusterwith the highest proportion of relevant documents (cf. [16]).Note that density selection presumes that some amount ofrelevance information is available to the selection procedurewhereas closest and feedback do not.The �nal factor, projection technique, has already beendiscussed in Section 2. Unlike for the other factors, whichserve as controls, for this factor we wish to discover whichlevels of the factor signi�cantly di�er in terms of e�ciencyand performance. In order to test for signi�cant di�erenceswe use Tukey's W procedure. (For a detailed description ofthis test, see e.g. [20].) This test takes into consideration thatwhen a large number of di�erence tests are performed inde-pendently, there is high probability of error. For example,if the probability of error of an individual test is 5% and100 tests are performed, then on average �ve tests will haveerroneous results. Tukey's W procedure guarantees that, fora 95% signi�cance level, the probability of error for any ofthe di�erences between levels is only 5% regardless of thenumber of levels under consideration. Tukey's W procedureis similar to the Sche��e test used in [27].4 Results and Discussion4.1 E�ciencyThe experiments consisted of clustering the WSJ subcollec-tion using each of the 6 projections for global clustering.Similarly, for local clustering, each of the 98 result sets (49for short queries and 49 for long queries) were clustered us-ing each of the 6 projections. The experiments were run on a



factor levels descriptionprojection full unmodi�ed vectorsTF-20 term frequency weighting, 20 terms/documentTF-50 term frequency weighting, 50 terms/documentLSI-20 LSI conversion, 20 dimensionsLSI-50 LSI conversion, 50 dimensionsLSI-150 LSI conversion, 150 dimensionsclustering local the 1000 documents closest to the query are clusteredscope global the entire corpus is clusteredquery long the original query; average length is 10.8 termsshort a shortened query; average length is 2.3 termscluster closest pick cluster closest to the queryselection feedback closest preceded by pseudo-feedbackdensity pick cluster with highest proportion of relevant docsTable 1: The factors that we modify in studying the six projection techniques. There are 6� 2� 2� 3 = 72 tests in all.full TF-20 TF-50 LSI-20 LSI-50 LSI-150global 78537 5132 8925 1543 2241 4716local long 8120 1219 1932 350 464 897local short 6822 1168 1861 324 443 859Table 2: Clock Times in seconds for the six projection techniques.dedicated Sun Ultra-1, running Solaris 5.5, with 316 Mega-bytes of main memory. Table 2 shows the CPU times for the15 experiments. CPU times for local clustering are summedover all 49 queries. Average times for local clustering rangefrom 7 seconds per query for LSI-20 and short queries (324seconds total) to almost 3 minutes per query for full andlong queries (8120 seconds total). Processing times for longqueries are generally longer because, as mentioned above,the result sets of some of the short queries have fewer than1000 members.It is obvious from Table 2 that LSI and truncation aremuch more e�cient than full. For global clustering the im-provements range from 8.8 times faster for full vs. TF-50to 51 times faster for full vs. LSI-20. For local cluster-ing the improvements range from 3.7 times faster for fullvs. TF-50 (short) to 23 times faster for full vs. LSI-20(long).To con�rm our impression that LSI and truncation arefaster than full, we performed an analysis of variance (AN-OVA) on Table 2. Since ANOVA is an additive model weconverted all clock times to logarithms under the assump-tion that the e�ects of the factors are multiplicative ratherthan additive. We performed Tukey's W test, comparingthe average logarithms of the clock times of the projections.The results of the test are summarized in Table 3. This ana-lysis yields a critical value for a given alpha level, chosento be 0.05 here. If the di�erence between two averages ismore than the critical value, then they are di�erent at a sig-ni�cance level of 0.95. The critical value for this analysisis 0.550. Hence, there is no signi�cant di�erence betweenTF-50 and TF-20 (group b), between TF-20 and LSI-150(group c), and between LSI-50 and LSI-20 (group d). Forall other pairs of projections, there is a signi�cant di�erencein time e�ciency.It is not surprising that computing a full-pro�le distancemeasure is much more time consuming than computing areduced-pro�le measure. In full-pro�le clustering, centroids

can include several tens of thousands of terms. In Buck-shot clustering, most time is spent on computing distances,which is roughly linear in the length of the pro�les. Sincethe centroid pro�les are much longer without projection, full-pro�le distance calculations are much slower.The reason for the e�ciency advantage of LSI-d is thateven when we use TF-c, we do not project document pro�les.So only for LSI-d do document pro�les have a �xed, smalllength.However, the CPU times presented do not include the\compile-time" operation of Latent Semantic Indexing. Ittook roughly 20,000 seconds (about 5.5 hours) to computethe LSI for this experiment on the Sun Ultra-1. If that timewere included, then truncation would be the winner in termsof time e�ciency. It was not included because the LSI ana-lysis does not have to be repeated when clustering a newlocal set of documents or choosing a di�erent number ofclusters or (smaller) number of dimensions. Nevertheless,the time for the analysis has to be taken into account injudging the overall cost of LSI-based clustering.In summary, clustering after projection is an order ofmagnitude faster than full-pro�le clustering for global clus-tering. Although the improvement for local clustering isnot quite as large as for global clustering, even moderateimprovements in response time have a dramatic impact inan interactive setting, the most likely application setting forlocal clustering.4.2 Retrieval PerformanceAs discussed above, we measure the quality of a clusteringby ranking the documents in the selected cluster and evalu-ating this ranking as the response to an information retrievalquery. Table 4 gives performance results for the 72 possiblecombinations of projection (major rows of Table 4), clusterselection method (major columns of Table 4), scope (minorrows of Table 4), and query type (minor columns of Table 4).



projection average group 1 group 2 group 3 group 4full 9.7 aTF-50 8.064 bTF-20 7.571 b cLSI-150 7.338 cLSI-50 6.649 dLSI-20 6.327 dsigni�cant di�erence for � = 0:05: 0.550Table 3: E�ciency: Groups of averages that are not signi�cantly di�erent.feedback closest densitylong short long short long shortfull gl 0.044 42.3 0.029 44.30.062 39.5 0.068 37.6 0.017 44.4 0.040 44.10.054 38.1 0.066 37.9 0.040 44.1 0.102 26.60.136 16.7 0.107 21.5TF-20 gl 0.020 47.5 0.014 48.00.063 37.2 0.061 39.5 0.011 47.4 0.011 47.60.019 43.3 0.059 41.8 0.069 28.0 0.071 30.90.118 19.4 0.098 22.6TF-50 gl 0.023 45.9 0.031 44.00.084 33.8 0.052 40.6 0.023 45.9 0.022 46.40.073 35.7 0.061 37.2 0.096 25.2 0.089 28.70.138 16.4 0.103 22.5LSI-20 gl 0.023 47.2 0.018 48.70.077 35.8 0.064 38.3 0.015 45.4 0.018 49.00.097 27.3 0.068 34.3 0.106 22.8 0.106 26.80.140 15.5 0.105 20.7LSI-50 gl 0.020 49.6 0.010 49.00.061 40.3 0.057 39.4 0.022 47.5 0.010 48.70.095 27.0 0.068 35.3 0.108 22.0 0.107 24.90.142 15.7 0.104 20.6LSI-150 gl 0.022 46.9 0.014 48.10.068 37.3 0.051 41.3 0.018 47.6 0.013 47.60.078 32.9 0.044 40.4 0.101 22.5 0.097 26.60.141 16.1 0.112 19.2sim. search 0.1118 (long), 0.100 (short)Table 4: Performance of Clustering Methods. Each entry is average precision followed by average rank. g and l stand forglobal and local, respectively.We give two performance measures for each of the 72methods: uninterpolated average precision and average rankof uninterpolated average precision. Uninterpolated averageprecision is computed by taking the precision at each relev-ant document in the ranked list (number of relevant docu-ments up to this point divided by total number of documentsup to this point) and averaging these measurements over allrelevant documents.7 For each of the 72 experiments, theaverage precision number given in Table 4 is the average ofuninterpolated average precision over the 49 queries.The disadvantage of taking such an average over queriesis that one method may score higher than another becauseof its exceptionally high performance for a small numberof queries, despite poor performance in general. For thisreason, we use a second rank-based score which comparesmethods on a query-by-query basis [17]. For this score, theaverage precision results of the 72 methods are ranked fora particular query. The best method receives rank 0, thesecond rank 1, and so on until the worst result receives rank71. After repeating this process for all queries, we have49 ranks for each method. The rank-based measure for amethod is the average of these 49 ranks. Note that bet-ter performance corresponds to higher average precision butlower rank (since rank 0 is the best possible rank and rank71 the worst possible rank).We again use ANOVA and Tukey's W procedure to ana-lyze these results in terms of di�erences between the six7If a relevant document is not in the selected cluster the precisionfor that document is assumed to be zero.
projections.8 Two sets of tests were performed, one for aver-age precision and one for ranks as shown in Tables 5 and 6.Both analyses agree that there is no signi�cant di�er-ence between LSI-20, LSI-50, LSI-150, TF-50, and full.In both analyses, TF-20 is signi�cantly worse than someprojections (worse than LSI-20, LSI-50, TF-50, and fullwhen tested on average precision, and worse than LSI-20when tested on on ranks).This result is quite surprising. A great deal of inform-ation is lost when cluster centroids are reduced from thou-sands of terms to less than a hundred terms as we do intruncation. Yet truncating to 50 terms has no measurablee�ect on cluster quality. Only with extreme truncation, to20 terms, is clustering performance a�ected.The good performance of LSI is not as surprising, sinceLSI �nds an optimal dimensionality reduction in the sensedescribed in Section 2. This optimality property suggeststhat LSI is less likely than truncation to discard informationcrucial for clustering. However, it is surprising that there isno signi�cant di�erence between LSI-20, LSI-50 and LSI-150: In the similarity search arena, LSI with 50 dimensionshas been shown to perform worse than LSI with 150 dimen-sions [9]. We conclude that for clustering, as opposed to8We also ran an ANOVA on the 5-way table of dimensions 49 �2� 2� 3 � 6 with a separate average precision result for each query(as opposed to averaging average precision over 49 queries). Theanalysis gave the same result as the one reported below, namely, noperformance di�erence except for TF-20. However, the distributionof measurements for this 5-way table was clearly not normal, so wedecided to report the results for the 4-way table only.



projection average group 1 group 2LSI-20 0.0698 bfull 0.0686 bLSI-50 0.0670 bTF-50 0.0663 bLSI-150 0.0633 a bTF-20 0.0511 asigni�cant di�erence for � = 0:05: 0.0138Table 5: Retrieval Performance (average precision): Groups of averages that are not signi�cantly di�erent.projection average group 1 group 2LSI-20 34.3 aLSI-50 35.0 a bfull 35.2 a bTF-50 35.2 a bLSI-150 35.6 a bTF-20 37.8 bsigni�cant di�erence for � = 0:05: 3.03Table 6: Retrieval Performance (rank measure): Groups of averages that are not signi�cantly di�erent.for similarity search, a relatively small number of dimen-sions is su�cient to achieve optimal results. In fact, LSI-20performed better than LSI-50 and LSI-150 under both thegoodness measures we used, though we attribute this small,insigni�cant di�erence to noise.A major motivation for using LSI in similarity search isthat it addresses the vocabulary problem in term-based re-trieval. An example (adapted from [9]) is given in Figure 1.The query in the �gure will only retrieve documents 1 and3 for term-based similarity search. However, LSI will rep-resent the terms \interface" and \HCI" by vectors that areclose to each other because these two words have a similardistribution in the documents of the collection. As a result,the query will also retrieve document 2 when both query anddocuments are represented in LSI space.It is not so clear that, in clustering, there is a similarvocabulary problem that LSI could be bene�cial in solving.In other words, is it likely that two documents with similarcontent but non-overlapping (or only slightly overlapping)vocabularies will be assigned to two di�erent clusters? Theanswer, at least for Buckshot, is \no." This is made clear byexamining how Buckshot computes clusters. After the ini-tial random sample has been clustered, cluster centroids arecomputed as sums of members of the clusters. As a result,terms that frequently co-occur in documents will also co-occur in centroids, since the centroid contains all the termsin the cluster's documents. For the example in Figure 1 thismeans that if a cluster contains many documents with terms\user" and \interface," then some of these documents willalso contain \HCI" and \interaction." Consequently, all fourterms will be part of the cluster's centroid, and documentswith both sets of terms will be assigned to the cluster. Weconclude that clustering | or at least clustering based oncentroid computation and centroid-based reassignment |is not susceptible to the vocabulary problem. Clustering ex-ploits the co-occurrence structure of terms implicitly withoutthe need of additional computation.99We have made the assumption here that semantic similarity can bededuced from the co-occurrence structure. If this is not the case, then

The behavior of centroid-based clustering techniques ex-plains why LSI does not give rise to better clusters thanfull, but it does not explain why it performs equivalentlyto truncation. In the terminology introduced above, LSI isa global projection while truncation is local. The global pro-jection performs the same dimensionality reduction for eachcluster centroid. In contrast, the local projection selects adi�erent set of terms to be excised for each centroid. Asa result, in our experiment the cluster centroids in globalclustering for TF-50 had 2248 distinct terms. On average,each of these 2248 terms is found in only 12.5 percent of the360 centroids! Although the identical truncation constantsin LSI-50 and TF-50 suggest that the dimensionality of thereduced spaces is the same, in actuality the dimensionalityof the truncation space, created by a local projection, is 45times as high as the space created by the global projection.Even if the local projection of truncation is not optimal inthe sense that LSI is, the e�ective dimensionality of the res-ulting space for a given truncation constant is substantiallyhigher for truncation than for LSI.Another way to look at the same phenomenon is to re-member that reassignment, the key operation for determiningcluster membership, is a local calculation. Moderate trun-cation preserves the locally important terms and thus doesnot much a�ect reassignment (and hence cluster quality).Since (excepting TF-20) there is no di�erence in clus-tering e�ectiveness between the projections, the main selec-tion criterion for an implementation should be e�ciency. Asshown above, TF-50, LSI-20, LSI-50 and LSI-150 are themost e�cient projections. However, the LSI projections re-quire an expensive \compile-time" calculation. Our recom-mendation is therefore to use moderate truncation, to about50 terms per document, for clustering. Moderate trunca-tion combines optimal clustering e�ectiveness and impress-ive time e�ciency.There is one weakness in our argument in favor of TF-50.Although computing the LSI transformation for our exper-neither LSI nor clustering will be able to correctly handle documentswith similar content but di�erent vocabulary.



term 1 term 2 term 3 term 4query user interfacedocument 1 user interface HCI interactiondocument 2 HCI interactiondocument 3 user interfaceFigure 1: Example for the vocabulary problem. For the query and the three documents, the terms they contain are listed intheir respective rows.iments took more than 5 hours on a powerful machine, thetime complexity of Singular Value Decomposition (the un-derlying numerical calculation for LSI) is cubic in the numberof singular values computed. While we have determined thatradical truncation harms clustering e�ectiveness (TF-20 vs.TF-50), we don't know for which truncation constant clusterquality will deteriorate for LSI clustering. If this constantis very small (e.g., LSI-10), then the compile-time operationof LSI may take so little time that it would cease to factoras a major concern when selecting a clustering algorithm.In future work, we will perform additional experiments withLSI with even fewer dimensions in order to further clarifythe behavior of LSI.4.3 The Impact of Other FactorsAlthough it is not the focus of the paper, a brief analysis offactors other than projection may be of interest.10Scope. Local clustering (mean average precision: 0.083)is signi�cantly better than global clustering (mean averageprecision: 0.046) (� = 0:001). This result is to be expectedsince local clustering is performed for a di�erent selectedset for each query. In contrast, one set of clusters is usedfor all queries in global clustering. Since local is alsofaster than global, it may seem that there is no reason touse global. However, the times we report for global in-clude the time needed to create the global clustering, whichlike the LSI calculation need only be done once in a pre-processing step. For a given query, global is actually muchfaster than local if the global clustering already exists. Thebest solution to this time/quality trade-o� might be a hy-brid scheme where a pre-processed clustering is adaptivelymodi�ed based on the result set. One possibility, describedin [21], is signi�cantly faster than a local clustering schemebut equal to it in quality.Query. Long queries (mean average precision: 0.069) aresigni�cantly better than short queries (mean average preci-sion: 0.060) (� = 0:001). This result is to be expected sincelonger queries provide a better speci�cation of the user's in-formation need than short queries.Cluster selection. Density selection (mean average pre-cision: 0.108) is better than closest (mean average preci-sion: 0.042) and feedback (mean average precision: 0.043)(� = 0:01). This result suggests that it can be quite hard to�nd automatic cluster selection methods (like the one in [19])that perform as well as partially manual ones like density.Feedback is slightly better than closest, but this dif-ference is not signi�cant for � = 0:05.10We only report results for average precision, but all signi�canceresults below were con�rmed by the analysis on ranks: feedback,closest < density; global < local; and short < long.

5 ConclusionIn this paper, we have shown that projecting documentsvia LSI and truncation o�ers a dramatic advantage overfull-pro�le clustering in terms of time e�ciency. The im-proved e�ciency, surprisingly, is not accompanied by a lossof cluster quality. In fact, with the exception of radicaltruncation (TF-20), there is no signi�cant di�erence in thecluster quality of any of the projections we studied. Thismeans that, in contrast to similarity search, clustering canproceed successfully even if vector representations have beenreduced at a considerable loss of information. We explainthis result by the fact that clustering is a less �ne-grainedtask than similarity search and therefore requires less preci-sion in determining the distances of objects with respect toeach other.In future work, we plan to investigate the impact of oneimportant factor that we have neglected here: cluster size.The number of clusters was �xed at 400 for global and 5 inlocal clustering, resulting in an average cluster size of about200. However, smaller cluster sizes have been found to bee�ective in [19] for local clustering, and the e�ect of clustersize on global clustering remains to be explored. In addi-tion, we are interested in global term truncation, in whichone global set of, say, 1000 terms is chosen to be retainedafter truncation. This may well shed light on how import-ant the choice of weighting scheme is for the quality of globaltruncation.Our recommendation for implementations of clustering isto use the truncation projection with a moderate amountof truncation, around 50 terms. This projection is the moste�cient of the ones investigated here when both compile-timeand run-time computations are taken into account. Despiteits speed, truncation creates clusters of the same quality asthe other projections. We hope that lightweight yet e�ectiveclustering algorithms based on the truncation projection willmake clustering even more widely applicable than it is now.Acknowledgments. We thank Jan Pedersen, MartiHearst, David Hull, Mehran Sahami and three anonymousreviewers for helpful comments.References[1] Michael W. Berry. Large-scale sparse singular valuecomputations. The International Journal of Supercom-puter Applications, 6(1):13{49, 1992.[2] Chris Buckley, Amit Singhal, Mandar Mitra, and Ger-ard Salton. New retrieval approaches using SMART:TREC 4. pages 25{48, 1996. In [15].[3] Edith Cohen and David D. Lewis. Approximating mat-rix multiplication for pattern recognition tasks. In Pro-
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