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Abstract
In many real-world domains, supervised learning re-

quires a large number of training examples. In this paper,
we describe an active learning method that uses a commit-
tee of learners to reduce the number of training examples
required for learning. Our approach is similar to the Query
by Committee framework, where disagreement among the
committee members on the predicted label for the input part
of the example is used to signal the need for knowing the
actual value of the label. Our experiments are conducted in
the text categorization domain, which is characterized by a
large number of features, many of which are irrelevant. We
report here on experiments using a committee of Winnow-
based learners and demonstrate that this approach can re-
duce the number of labeled training examples required over
that used by a single Winnow learner by 1-2 orders of mag-
nitude.

1. Introduction
The amount of textual information that is available in elec-
tronic form has grown exponentially in recent years.
Automating the task of indexing, categorizing, and
organizing these electronic documents will make it easier
and cheaper for people to find relevant written materials.

The goal of text categorization is to assign each docu-
ment to the appropriate categories, based on the semantic
content of the document. A knowledge engineering
approach to text categorization involves designing rules
that correctly categorize the documents. Our goal is to
develop automatic methods for text categorization through
the application of machine learning techniques.

The text categorization domain has several characteris-
tics that make it a  difficult domain for the use of machine
learning, including a very large number of input features
(10,000+), high levels of attribute and class noise, and a
large percentage of features that are irrelevant. As a result,
the use of supervised learning requires a relatively large
number of labeled examples.

We hav e been working on developing methods that will
dramatically reduce the number of labeled examples
needed in order to train the system, without incurring
unacceptable decreases in prediction accuracy. Our
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approach so far has utilized very little in the way of any
preprocessing that is specific to the handling of text, so we
believe that many of our results will also apply to other
similarly-difficult machine learning domains.

Active learning refers to machine learning methods that
allow the learning program to exert some control over the
examples on which it learns [Cohn94]. Query by Commit-
tee (QBC) is one specific type of active learning which
starts with a committee of all possible hypotheses. Each
feature vector is presented to the committee. A high degree
of disagreement among the hypotheses as to the predicted
value of the label indicates that the example will be very
informative, and so the actual label is requested. The label
is then used to remove all hypotheses from the committee
that do not predict the actual label [Freund92, Seung92,
Freund95].

The learning methods which we have inv estigated are
similar to QBC, in that they use disagreement among the
committee members to determine the need for requesting
the actual value of each example’s label from the teacher.
Unlike QBC, our committee consists of a small finite num-
ber of hypotheses, which are updated with learning. We
use Winnow as the learning algorithm. A small learning
rate is used to make the method robust against noise. We
use majority voting to determine the prediction of the
committee.

The purpose of this paper is to present results of experi-
ments that demonstrate the effectiveness of active learning
with committees, and also to analyze the sources of this
effectiveness. We performed experiments on 4 different
systems which vary in terms of whether or not they use
active learning and whether or not they use committees for
prediction. Our experiments indicate that active learning
with committees can, as compared to supervised learning
with a single learner, result in learning methods that use
far fewer labeled examples but still achieve the same accu-
racy.

2. Previous Research
2.1 Active Learning
"Active learning" in its most general sense refers to any
form of learning wherein the learning algorithm has some
degree of control over the examples on which it is trained.
One active learning approach is the membership query
paradigm, in which the learner can construct new sets of



inputs and request that the teacher provide their labels
[Angluin88]. In this paper, we are specifically considering
the type of active learning in which there exists a set of
examples, and the learner chooses which of these it will
use for learning. Typically, the cycle proceeds as follows.
The teacher presents the learner with the feature vector
portion of an example (i.e., the example without the label).
The learner examines the feature vector and then decides
whether or not to ask for the label. If the label is requested,
then the example is considered as having been used as a
training example by the learner.

There have been some promising results in the active
learning area. Cohn, Atlas, and Ladner developed the the-
ory for an active learning method called selective sampling
and then applied it to some small to moderate sized prob-
lems as a demonstration of the viability of this new
approach [Cohn94]. Lewis and Gale developed a method
called uncertainty sampling, which is similar conceptually
to selective sampling, but which is specifically meant for
use in text categorization. Their method selects for label-
ing those examples whose membership is most unclear by
using an approximation based on Bayes Rule, certain inde-
pendence assumptions, and logistic regression. Since the
method was developed for text categorization, it is able to
handle noise as well as large numbers of features
[Lewis94].

While approaches and results vary, these and other stud-
ies have concluded that active learning greatly improves
learning efficiency by reducing the number of labeled
examples used [Board87, Freund92, Dagan95].

2.2 Query by Committee (QBC)
Query by Committee (QBC) is a learning method which
uses a committee of hypotheses to decide for which exam-
ples the labels will be requested. It also uses the committee
to determine the prediction of the label. Since QBC exerts
some control over the examples on which it learns, it is
one form of active learning.

QBC maintains a committee of hypotheses consistent
with the labeled examples it has seen so far – a representa-
tion of the version space. For many real-world problems,
the committee is infinite. Each training example is pre-
sented to the algorithm unlabeled. An even number of
hypotheses (usually 2) are chosen at random, given the
attribute values, and asked to predict the label. If their pre-
dictions form a tie, then the example is assumed to be
maximally informative, the algorithm requests the actual
label from the teacher and updates the version space [Fre-
und92, Seung92, Freund95].

Freund, Seung, Shamir, and Tishby analyzed QBC in
detail and showed that the number of examples required in
this learning situation is logarithmic in the number of
examples required for random example selection learning
[Freund92]. Dagan and Engelson proposed a similar
method, termed committee-based sampling, for selecting
examples to be labeled [Dagan95]. The informativeness of

an example (and so the desirability of having it labeled) is
indicated by the entropy of the predictions of the various
hypotheses in the committee.

3. Approach
Our active learning with committees approach uses a form
of QBC for deciding whether or not to see the label, Win-
now for updating the hypotheses in the committee, and
majority voting for prediction of the labels for the test
examples. Although it may not be surprising that the
choice of good examples allows one to learn with fewer
examples, it is not easy to know how to select good exam-
ples, especially in the presence of noise. Random selection
of examples is no better than passive learning.

3.1 Deciding to See the Label
QBC offers the benefit of a logarithmic reduction in the
number of labeled training examples needed. However,
QBC needs to maintain all possible hypotheses consistent
with the training data – the version space – in some form
[Seung92]. This is the committee. When data is noisy, this
will not be possible. When there is a very large number of
candidate hypotheses, explicitly representing them will not
be practical. In text categorization, we have data that is
noisy. Because of the large number of attributes, text cate-
gorization typically also entails a large number of possible
hypotheses.

Our approach is to use a committee with a small number
of hypotheses. Once presented with an unlabeled exam-
ple, we do the following: two randomly chosen members
of the committee are given the unlabeled example and
asked to predict the label. If their predictions disagree,
then we ask to see the actual label.

3.2 Updating the Hypotheses
After the label is seen, the learners adjust the hypotheses
in the committee. Typically, each member of the commit-
tee learns individually. We chose Winnow as the learning
algorithm [Littlestone88]. Winnow is especially suited to
large attribute spaces and to situations in which there is a
large percentage of irrelevant features. Winnow also has a
relatively low space and time complexity and is easy to
implement. And, Winnow has been used successfully in
other noisy text-based applications [Roth96].

Actually, "Winnow" refers to a quite large family of
algorithms [Littlestone89]. We hav e thus far used one of
the more general (and simpler) Winnow algorithms –
WINNOW2 in [Littlestone88], with some modifications from
[Littlestone91]. We will hereafter refer to the algorithm
that we use as simply "Winnow".

Conceptually, think of each document as being repre-
sented by a data point in some feature space. What the
Winnow algorithm does is try to pass a hyperplane through
the "cloud" of document data points so that the points rep-
resenting all of the documents that are in the specified



category lie on one side of the hyperplane, and the points
representing all of the documents that are not in the cate-
gory lie on the other side of the hyperplane. If there exists
such a separating hyperplane, then the data is termed lin-
early separable. Knowing the equation of this hyperplane,
we can predict the category membership of new docu-
ments by simply seeing on which side of the hyperplane
they fall.

Winnow starts with the hyperplane in some initial loca-
tion and then adjusts the location of the hyperplane gradu-
ally as it learns. The hyperplane is moved by multiplying
the coefficients in its equation by a constant (which is one
of the parameters given to Winnow). A Winnow learner
modifies the location of the hyperplane only when it
encounters an example that it does not already classify
correctly.

3.3 Committee Prediction
Once the learning process has been completed, the com-
mittee needs to make predictions for previously unseen
inputs. The idea behind using a committee to make pre-
dictions is that a committee of several members might be
able to outperform a single member [Freund92, Seung92,
Breiman96]. Each member predicts a label, and these
votes are then combined using majority vote.

4. Experimental Results
4.1 The Systems to be Compared
We examined the performance of 4 different learning sys-
tems. We not only compared them to see which system is
"the best", but we also looked into why. In order to meet
this second goal, we constructed the systems in somewhat
of a boolean building block fashion, where each system
does/does not have particular features.

The systems are:
– active-majority: the learner is a committee of Winnows

which uses disagreement between two randomly chosen
members to determine which labels to obtain from the
teacher. Prediction is made by that same committee,
using majority rule.

– passive-majority: the learner is a committee of Winnows
which passively accepts all labels from the teacher. Pre-
diction is made by that same committee, using majority
rule.

– active-single: the learner is a committee of Winnows
which uses disagreement between two randomly chosen
members to determine which labels to obtain from the
teacher. Howev er, in the prediction phase, only a single
member of the committee is used. For all predictions in
a particular trial, a committee member chosen at random
makes the predictions.

– passive-single: the learner is a single Winnow which
passively accepts all labels from the teacher. Prediction
is by that same Winnow. This can be thought of as the
"base case" – a single supervised learner and predictor.

4.2 Test Bed
All of our experiments were conducted using the titles of
newspaper articles from the Reuters-22173 corpus
[Reuters], hereafter "Reuters". The Reuters corpus is a
collection of 22,173 Reuters newswire articles ("docu-
ments") from 1987. It is a 25Mb full text corpus. Each arti-
cle has been assigned to categories by human indexers.
Typical categories are "grain", "gold", "Canada", and
"trade". An article may be assigned to any number of cate-
gories, including none.

The Reuters-22173 corpus contains formatting errors,
misspellings, and garbled/missing/reordered sections.
This is actually good, in that it is typical of most real-
world data.

We were very conservative in how we preprocessed the
data. We specifically did not correct any misspellings,
either in the text of the articles, or in the names of the cate-
gories assigned to each article. Neither did we remove any
illegal category names. The preprocessing step converts
the raw data in the corpus into sets of labeled examples.
The preprocessor unpacks the corpus, performs a rough
structural parse, separates text and category information,
constructs a table of existing categories, tokenizes the text,
constructs a dictionary of text tokens, and prepares the
labeled examples. In these experiments, each token in a
document is a feature. Each feature is boolean-valued –
either the token does or does not appear in the document.
The labels are also boolean-valued – the document either
is or is not in each category.

There are several possible tokenizing methods. The
experiments reported in this paper tokenize text by sepa-
rating the text stream at whitespace or punctuation.

Full corpus statistics for Reuters (after our preprocessing):
– 22,173 documents
– 21,334 unique tokens in titles (maximum – the actual

number depends on the tokenizing method used)
– 679 categories

4.3 Repeated Trials
A variety of approaches have been utilized in previous
research using the Reuters corpus [Hayes90, Lewis91,
Apte94]. There are some differences among researchers
as to which articles in the corpus are used, and also there
are differences in how the corpus is split into training and
test sets. Normally researchers use one of 3 standard cor-
pus setups, and so it is predetermined which articles will
be used for training, which will be used for testing, and
which will not be used at all. Procedurally, the training and
test sets are constructed, and then the system being exam-
ined learns and is tested in the normal manner. Typically a



single trial is executed for each category, and the results
are averaged over all categories to obtain a measure of
overall system performance.

We are mainly interested at this point in comparisons
among our learning systems. In particular, we want to
compare their performance for categories most likely to
have ample training data. We used the 10 most frequently
occurring topic categories, as listed in [Lewis91], for our
experiments. We performed repeated trials for each cate-
gory, using randomly chosen training-test splits. We used
the entire corpus, and split it into 21,000 training examples
and 1,173 test examples. We used titles only for our tests.

For our experiments, we did the following. We gener-
ated a random training-test split. Then for each of the cate-
gories and for each of the systems, we ran a trial – we
trained the system, gathering data during and after train-
ing.

We analyzed the data gathered while learning was
occurring as well as the final results. The main results that
we examined were the number of labeled training exam-
ples used, accuracy (fraction of documents correctly clas-
sified), elapsed processor time used, space used during
learning, and space used during prediction. Our main sta-
tistical tool was the repeated measures analysis of variance
test, hereafter "anova". The null hypothesis is that all of
the systems actually perform the same on the average. We
performed single factor tests, with the factor being the sys-
tem.

All of the systems were initialized in the same manner,
so that comparisons among the systems would be fair.
How one does initialization is important in several learn-
ing algorithms, including Winnow. We compute initial
positions of the hyperplanes so that they approximately
bisect the space of all possible data points. We can com-
pute this knowing only the number of attributes in the
data. We chose this method because it allows the learners
to start the learning process at a reasonable location, and it
does not use any information about any actual data values.
Individual committee members are randomly initialized to
slightly different hyperplanes so that they represent differ-
ent initial hypotheses.

We used a committee with 7 members. This value was
determined by trial and error. We found that using a very
large committee increased the space and time complexity
of the algorithm without any significant increase in accu-
racy. With a large number of committee members, we
obtained large amounts of duplication. We ran tests with as
many as 1,000 committee members, but normally found
that, in terms of committee predictive behavior, there were
perhaps only 5 - 20 different prediction patterns. We found
that using a very small committee resulted in the commit-
tee becoming very sensitive to 1 or perhaps 2 of the mem-
bers, and the behavior of the committee began to approach
that of a single member.

4.4 Results
Figure 1 shows elapsed processor time as a function of the
number of training examples used, for each of the 4 sys-
tems. There is one dot on the graph for each trial. Observe
that, for each system, the dots form very tight clusters. We
have added labeled boxes around each of the clusters.
(Since the passive-majority and passive-single systems are
supervised learners, their boxes collapse into lines). Fig-
ure 1 dramatically illustrates that, in these experiments, the
differences among the systems in terms of both the num-
ber of labeled examples used and the elapsed execution
time were quite large. Figure 1 also shows that the varia-
tion in the behavior within each system, for both the num-
ber of training examples used and elapsed processor time,
was quite small.
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Figure 1: Elapsed Time versus Number of Training Exam-
ples Used

Anova indicates that which system one uses has a sig-
nificant effect on both the number of training examples
used (p < 0.0001) and on the elapsed execution time (p <
0.0001).

Note that, from Figure 1, one can also conclude that if
one has an abundant source of cheap labeled examples,
then perhaps the passive-single system is the best choice.
It uses the least amount of processor time (on the average).
However, one often does not have as many labeled exam-
ples as one wants. In these situations, active learning (the
active-majority and active-single systems) is beneficial.
From Figure 1, it would appear that the 2 active learning
systems are very similar, in that they hav e similar average
values both of number of training examples used and
elapsed processor time. How would one choose between
these 2 systems?

Figure 2 shows the average accuracy for each of the 4
systems as a function of the number of training examples
used. This is a learning trace, showing how accuracy
varies for each system as it learns. (Note the use of a log
scale). We can see that the systems employing active
learning use many fewer examples than those using super-
vised learning, which is consistent with the results in Fig-
ure 1. However, Figure 2 also shows that the 4 systems



end up with very similar final accuracies, while the path
that each takes to get there is different. The fact that the
systems are all about the same in terms of final accuracy
justifies our looking at other system characteristics (such
as number of training examples used and elapsed proces-
sor time) as metrics on which to base our comparison of
the systems. As regards the previously posed question as
to whether the active-majority or the active-single system
is better, one can see in Figure 2 that active-majority is,
during the learning process, more accurate than active-
single, with convergence to a common value occurring
only towards the end of the learning process. This differ-
ence is a consideration in situations where one has a lim-
ited number of training examples available. Figure 2 indi-
cates that active-majority would be the better system in
this situation, since its accuracy is, on the average, always
greater than that of the other systems.
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Finally, it is appropriate to examine the final accuracies
in detail, since one of our goals is to develop systems that
reduce the number of training examples used without
unduly reducing predictive accuracy. The above argu-
ments as to which system is better in various situations
would certainly need to be modified if the systems’ final
accuracies were quite different. We can see in Table 1 that
the differences in accuracy are relatively small. That is, all
4 of the systems gav e similar levels of accuracy.

system mean std dev
active-majority 0.9581 0.0202

passive-majority 0.9645 0.0320
active-single 0.9562 0.0207

passive-single 0.9622 0.0331

Table 1: Final Accuracies

Anova indicates that the system used does not have a
significant effect on final accuracy.

5. Conclusions
Of the systems tested, active learning with committees (the
active-majority system) is the best approach when one has
a limited supply of labeled examples. This approach
achieves accuracies that are the same as those obtained by
the other systems, but uses only 2.9% as many training
examples as the supervised learners. It also requires less
execution time than a committee of supervised learners
that uses majority rule for prediction. Because it has the
best average accuracy as learning progresses, the active-
majority system is also the best one for applications in
which learning is halted (and prediction commences) after
a certain period of elapsed time, such as when interactive
processing is occurring with a human being.

If labeled examples are cheap, then the passive-single
system is the best approach, as it gives the smallest
elapsed time on the average – it uses 29 - 69% of the time
required by the other systems tested. This is because the
passive-single system does not spend any time performing
computations needed to decide whether or not to accept
each label – it accepts all labels. Neither does it spend
time updating several learners, nor does it spend time hav-
ing several individual committee members make predic-
tions in order to determine the prediction of the committee
as a whole – this committee has only one member.
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We present here a brief intuitive argument as to why the
active-majority method works so well. Please see [Fre-
und92] and [Freund95] for a more detailed discussion of
this aspect of active learning, as it relates to QBC. Figure
3 shows accuracy as a function of the number of training
examples offered to the learner (versus used by the
learner), with accuracy calculated at each hundredth exam-
ple used (to smooth out the effects of noise and to make
the steps more visible). Initially, assuming that the
hypotheses in the committee are sufficiently diverse, two
randomly chosen hypotheses disagree on an example with
a significantly high probability. Hence labels are requested
for a significant fraction (about 1⁄2) of the examples. As the
learning progresses, each hypothesis approaches the opti-
mal target hypothesis, and hence the diversity between the



different hypotheses decreases. As a result, the informa-
tiveness of an example as measured by the probability of
disagreement between two randomly chosen hypotheses
decreases, and the distance between two successive label
requests increases. This effect is demonstrated by the hor-
izontal portions of the steps in Figure 3 becoming longer
as learning occurs.

Figure 2 suggests that the best accuracy we can hope
for, giv en this data and the type of learner we are using, is
about 96 - 97%. This suggestion is based on the observa-
tion that the 2 supervised learners seem to reach a plateau
which thousands of additional training examples do not
alter greatly. This conclusion is consistent with the fact
that the data is noisy, and also the data is probably not, in
general, linearly separable.

6. Future Work
We would of course like to make the methods even more
accurate. One possibility is to increase the number of
hypotheses that give different predictive behaviors. This
seems to be heading in the direction of full QBC, but one
has to find a way to handle noise and the fact that (since
we are using Winnow) the data is not linearly separable.

One would like active learning methods that were able
to, at least to some degree, operate in a batch mode. By
this, we mean that the learner would tell the teacher
(human) that it needs the following n examples labeled,
rather than asking that examples be labeled one at a time.

We would also like to adapt these methods to informa-
tion retrieval. The task in information retrieval is to
respond to queries with documents that satisfy the query.
However, it has been found that users are often much bet-
ter at deciding whether or not a particular document is of
interest than they are at expressing that interest in a query
language. User input in the form of relevance feedback
significantly increases retrieval effectiveness [Croft95]. We
can think of relevance feedback as allowing the system to
learn the user’s intentions by asking for the labels for
selected examples, and use the active learning with com-
mittees paradigm to decide which examples to present to
the user.
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