Memory Controller Policies for DRAM Power Management Xiaobo Fan, Carla S. Ellis, Alvin R. Lebeck

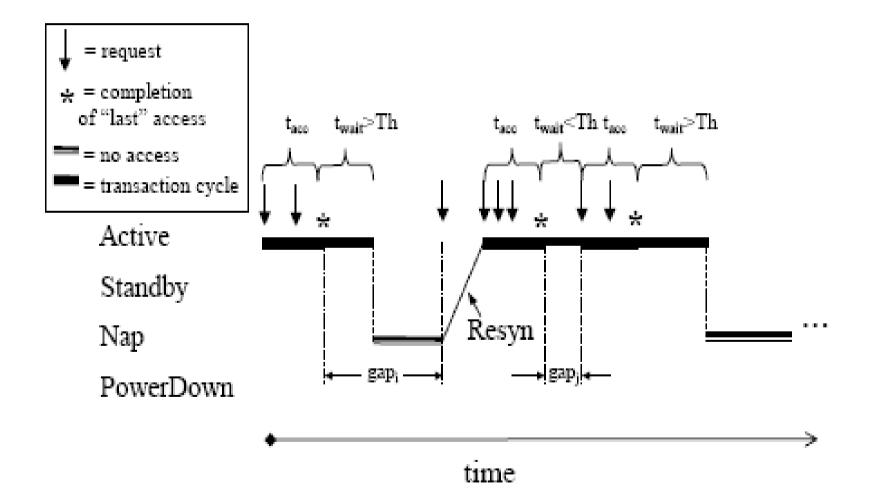
Sriram Aananthakrishnan

Ideas

- Investigates Memory Controller policies for DRAM power management
- Claim : Transitioning to low power state when DRAM chip becomes idle
- Analytic Model : idle time of DRAM chips as an exponential distribution
- Model Validation by Trace driven Simulation

Key Terms

- Gap interval between clustered accesses
 - Large gap values
 - Exponential distribution observed
- Threshold (Th) Time spent in current power state before transitioning to low power state

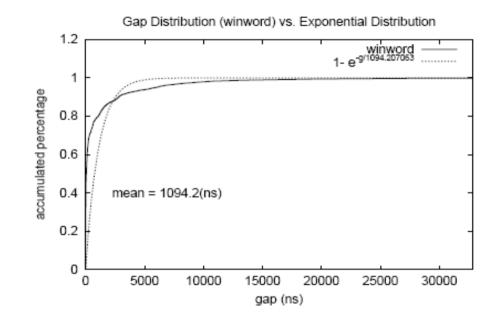

RDRAM

- Power States
 - Active, Standby, Nap, Powerdown
- Active state to perform transactions
- Nap mode Maximum power savings
- Additional delay for Clock resynchronization

RDRAM Power State and Transition Values

Power State	Power	Time
Transition	(mW)	(nS)
Active	$P_a = 300$	$t_{acc}=60$
Standby	$P_s = 180$	-
Nap	$P_n = 30$	-
Powerdwn	$P_{p} = 3$	-
$Stby \rightarrow Act$	$P_{s \to a} = 240$	$T_{s \to a} = +6$
$\operatorname{Nap} \to \operatorname{Act}$	$P_{n \to a} = 165$	$T_{n \to a} = +60$
$Pdn \rightarrow Act$	$P_{p \to a} = 152$	$T_{p \to a} = +6000$

DRAM Power Management


Methodology

- Metric : Energy Delay product
- Analytic Evaluation
 - Evaluates the energy delay product with transition policies
- Trace Driven Simulation
 - Characterizes the memory access patterns
 - Validate the analytic model

Memory Access Pattern

- Time Measurement between clustered misses
- Approximation of Gap distribution

Benchmark	\mathbf{Result}
Compress 95	Pass
Go	Pass
Netscape	Pass
Acroread	Fail
PowerPoint	Fail
Winword	Fail

1. Memory Access gap as Exponential Distribution

$$p(g) = \frac{1}{\mu} e^{-\frac{g}{\mu}}$$

2. Mean time of staying in low power

$$t_{nap} = \int_{Th}^{\infty} p(g)(g - Th)dg = \mu e^{-\frac{Th}{\mu}}$$

3. Mean Energy Savings

$$\Delta e_1 = (P_a - P_n) t_{nap} = \mu (P_a - P_n) e^{-\frac{Th}{\mu}}$$

4. Mean Energy Cost for resynchronization

$$\Delta e_2 = \frac{1}{2} (P_a + P_n) T_{n \to a} \int_{T_h}^{\infty} p(g) dg$$
$$= \frac{1}{2} (P_a + P_n) T_{n \to a} e^{-\frac{T_h}{\mu}}$$

5. Mean Energy Cost

$$\Delta e = \Delta e_2 - \Delta e_1$$

= $\left[\frac{1}{2}(P_a + P_n)T_{n \to a} - (P_a - P_n)\mu\right]e^{\frac{-Th}{\mu}}$

6. Mean Increased Delay

$$\Delta d = \int_{Th}^{\infty} T_{n \to a} p(g) dg = T_{n \to a} e^{\frac{-Th}{\mu}}$$

7. With Power Transition Policy

$$e = e_0 + \Delta e$$
 $d = d_0 + \Delta d$

8. Change in Energy Delay Product

$$\Delta(E \bullet D) = E \bullet D - E_0 \bullet D_0$$

= $n^2 (d_0 \Delta e + \Delta de_0 + \Delta d\Delta e)$

9. Change in Energy delay product per gap

$$\Delta(e \bullet d) = d_0 \Delta e + \Delta de_0 + \Delta d\Delta e$$

Analytic Model – Mean Gap Variation

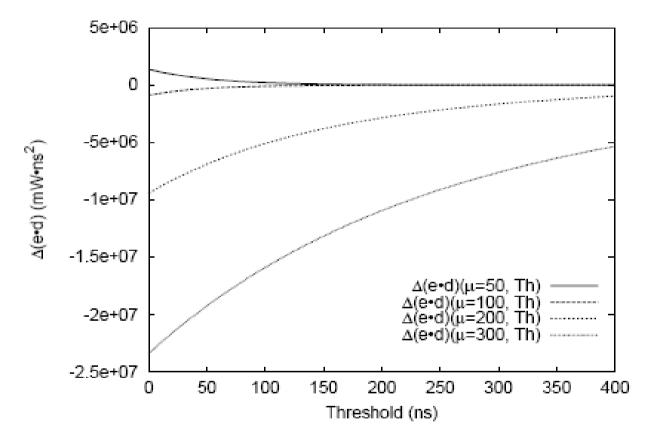
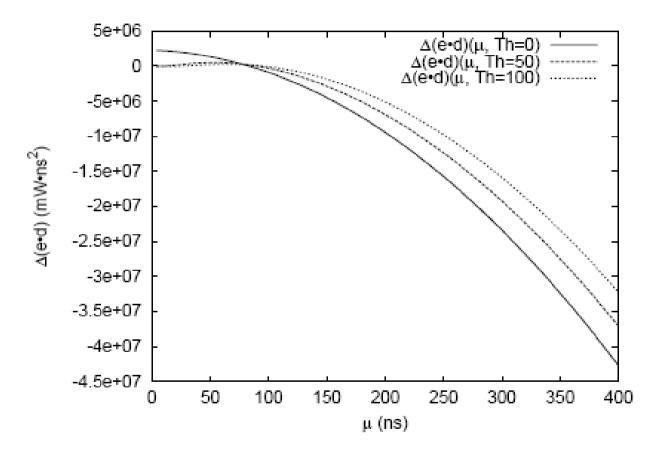



Figure 4: $\Delta(e \bullet d) = f(\mu, Th), \mu = 50, 100, 200, 300ns$

Analytic Model – Th Variation

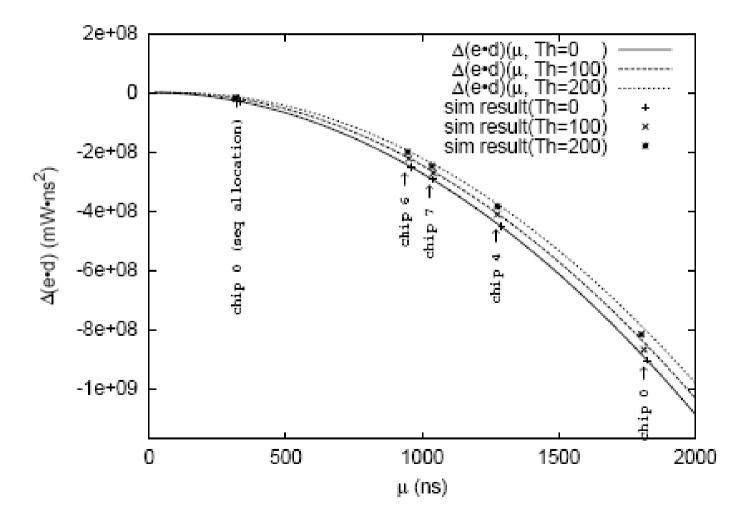


Figure 3: $\Delta(e \bullet d) = f(\mu, Th), Th = 0, 50, 100 ns$

Validation

- Compare Energy-delay product from simulation and model
- Compress95 within 5% of Simulation results
- Winword 50% in some cases

Model Validation – Simulation Graphs

Conclusions

 Qualitative results are same for both simulation and model

 DRAM chips should transition to low power state when they are idle