Disk
Overview & Physical Layer

- Today: Hitachi MicroDrive
1955: IBM RAMAC 305

Reference: “Memory Systems: Cache,
DRAM, Disk

Bruce Jacob, Spencer Ng, & David Wang

Today’s material & any uncredited diagram
came from chapters 16 & 17
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Importance & Speed

¢ Slowest form of on-line storage
* but the most important
» today: repository for the world’s knowledge
» what do you care about more?
* losing your computer or your files
¢ 2 roles for disks

* bottom rung of the virtual memory ladder
» slower and cheaper/bit than DRAM
» page fault :z= miss to disk
¢ if it happens often - go to lunch
= file system
» reliability & security become priorities
« financial data centers

- duplicate everything

- data in a particular location - the usual RAIDx approach
- replicate locations such that

- natural or human disaster doesn’t get them all
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Offline Storage

¢ Ignore it in what follows
e Removable disks

* were an integral part of the computer center until the mid

70’s
» mostly since disks didn’t hold enough data

» and the sealed (a.k.a. Winchester) drives didn’t show up until

1973.

* now they are reserved for PC backup and transport

» e.g. USB or FireWire backup disks, thumb drives etc.
¢ Enterprise
= several layers of backup
» 1st layer is disk based (access: seconds)
* most recent snap-shots

» 2" Jayer is tape (access: minutes - hours)
¢ usually in the form of automated stackers

» vault (access: days)
¢ holds the tapes
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Comments
* Focus today is on hard-drive disks (HDD)
= for on-line storage in computer systems
* Note some disks aren’t really disks
= Solid State Disk (SSD)
» a disk interface to a pile of chips
* today this Is FLASH based
* PCRAM, FeRAM, NRAM, ... possible future candidates
» significantly faster than HDD’s but
* more expensive
* longevity Issues
* Disks are pervasive in other digital gizmo’s
= iPod, DVRs, video cameras
» 1”7 & 1.8” form factors
!DJ School of Computing 4 csS7810
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CGR Better than Moore’s Law

Form Factor

Areal Density

1t AFC Media

10% | mcum«.a
100% CGR
10°

15t MR Head I’sm.csn
102 dn 3

1st Thin Film Head 5? Million X
ncrease
10 e
25% CGR
T T T

1650 1960 1670 1980 1990 2000 2010 1

Lineal Density 107
10° 102

74 A

102 1 1 1 1 1

1960 1970 1980 1990 2000 2010
bpi Production Year
10¢
" ;/ /f
10?

tpi

Disk Diameter (inches)

Megabits per in?

tracks or bits per inch

10 L L L L L
1960 1970 1980 1990 2000

Availability Year

School of Computing
JJ University of Utah 5 CsS7810

Interfaces & Improvement

¢ Interfaces
= Control moves onto the disk
» replaces motherboard control
» now — microprocessor and SRAM inside the disk
= Parallel to high speed serial interfaces
» parallel SCSI - 1983, IDE/ATA - 1986
+ limited by short fat cable issues
» serial Fiber Channel - 1997, SAS, SATA
* serlal enables storage area networks (NAS)
¢ Key improvement contributors
= thinner magnetic platter coating
= improvements in head design
= lower flying height
= accuracy of head positioning servo

» hard to do cheaply
* hence BPI CGR leads TPl CGR
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Access

¢ A disk address
= indirectly resolved to
» surface, radius, angle
* polar coordinates resolve to cylinder & sector
¢ Performance

= as always multiple metrics
» latency ::= response time
* since seek and rotational latency varies significantly
* response time usually averaged over large number of accesses
» bandwidth ::= transfer rate
* transfer rate = IOPS*average block size
- dependent on disk RPM and lineal density (BPI)
* multiple requests queued in disk controller
» hence response time looks exponential w/ increase in
* throughput, request arrival rate, utilization
* e.g. increased queueing delay

» optimization possible be reordering requests
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Workload Impact on Performance

¢ Numerous factors
= block size - larger block = longer transfer time
* random vs. sequential access
= footprint & # seeks and rotational scope
= read vs. write 2 writes can be deferred
Q depth: deeper 2 better optimization opportunity

= command arrival rate
» huge burst will increase Q occupancy time
» and longer service time
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Disk Futures

Disk demise oft predicted
= “greatly exaggerated” as Mark Twain said
¢ Horizontal to vertical transition underway
= increased areal density should continue
MAID might threaten tape for offline storage
= massive array of idle disks
Reduced form factor
* may enable RAID
= and server storage bricks may become available in PC’s

» brick is a bunch of disks, controller, and battery
» idea: even if power goes down disk writes complete

Common saying

= Silicon Valley misnomer
» more money made due to FeO2 than Si
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Disk Storage Layers

Physical Layer

= physics and engineering to just make disks work
Data Layer

= arrangement of data in blocks, sectors, stripes, ...
Internal Control Layer

= what the processor in the disk deals with
Interface Layer

= gpecifics of the drive interfaces
Cache or External Control Layer

= use of caches to improve performance

* issues in management of multiple drives
» RAS issues such as RAID
» power issues such as MAID
» huge issue for the datacenter

2 lectures won’t allow a deep dive into all of them
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Physical Layer

* 3 major components
= magnetic recording physics

» ferromagnetic materials
 magnetized by external field
* stable after external fleld Is removed
» common elements: iron, nickel, cobalt
* rare earth: gadolinium, dysprosium
 rapldly quenched metal alloys form amorphous FM materlals

» electron spin creates a magnetic field
* non-FM materials consist of electron pairs w/ opposite spins
* FM materials

Irad 1 hall

- Iong.;'ange atomic ordering (aligned in parallel) to form a domain
» beware the Curie temperature
+ above which the FM material loses to thermal entropy

= electromechanical and magnetic components
= integrated electronics in the drive
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Domains

e Bulk material

= domains randomly aligned
» until aligned under an external field
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Magnetic Field properties

Measurements in MKS
= things you might have forgotten from ugrad physics
Field strength
= H in amps/meter
Dipole moment
= field strength density: M - also in amps/meter
= M is essentially the level of magnetization
Flux density (a.k.a. magnetic induction)

* B in webers/m?2
»B=pyxH
» where , is free space permeability = 4x x 10-7
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H-M Hysteresis
* Key to magnetic recording w
= M is material state dependent / ;

He

Hard material - high Mr x Hc

He f'r
/)
/
Ms. / '\u‘
Ms - M saturation ‘,/
Mr-Mr t — latile value

Hc - H coeorcivity - demagnetize

Soft material - low Mr x Hc

Axial Anisotropic: preferred axis horizontal (early) perpendicular (future)
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Reading and Writing

o Write
= current in write head provides field
» driven by write channel electronics
» ideally drive to Ms
» highest signal to noise result since Mr separation is greatest
» in practice it’s a suboptimal choice
* high M compartment requires higher inter-bit separation
- classic magnetic nelghborhood problem
* high H values on head requires more current (power)
- and posslbly more time

e Read
= option 1: read the weak magnetic fields
» data value based on polarity
» problem - too hard to work in practice
= option 2: sense field reversal (easier)
» 1 =reversal, 0 = no reversal

* Required: balance read head sensitivity and write head
capability

mj School of Computing
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HDD Anatomy

Head Disk Assembly

Disk

Spindle & Motor

Magnet structure

ol.Voice Load/Unload
Coil Motor Ramp
T Actuator
" Flex cable
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Recording Medium

¢ Desireable properties
= thin (takes up less space)
= light (less power to spin)
= flat, smooth, rigid (low distortion allows head to fly lower)
= High Hc (stable Mr under high areal density)
= High Mr (improved signal to noise ratio)
tall thin rectangular hysteresis loop (not found in practice)
» max +Mr/-Mr separation
» smaller H currents for write efficiency
o Substrate
= traditionally aluminum

» now plated with electroless nickel-phosphorus
+ polished to a smoother finish

= now small form factor allows glass to be used
» more expensive but finer polish possible
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Magnetic Layer

e 1st 25 years
= particulate media
» magnetic particles in organic binder solution
» painted on spinning platter
* high rpm creates relatively uniform coating
» bake in oven to bind and then polish
* magnetic material
» gamma ferric oxide
» later: cobalt modified FeO, CrO, BaO,
« typlically used for flexible media since they are less brittle
» HDD now - use thin film
* sputtered magnetic material
- Ar pl bonds material directly into
* magnetic material not diluted by binder > higher areal density
* extremely uniform coating
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Platter Cross
Section
NiP - harder surface than Al-Mg

Cr - aids magnetic layer
properties and bonding

__—Lubricant 1 nm

-—
Magnetic layer - Cr increases
coercivity and squareness, grain
size influenced by process - e.g. i =T Co+Cr+X+Y Magnetic Layer 25 nm
temp and rate of deposition <
- - rereme—————————] " Cr Underlayer 50 nm

— Carbon Overcoat 10 nm

C overcoat - very thin hermetic =~ Ni-P Sublayer 10,000 nm
seal to prevent rust
~<———— Al-Mg Substrate

Lubricant - super thin, reduce —
wear between head and disk
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Spindle Motor

¢ Today w/ high areal density
» DC 3-phase 8-pole motors are common
» spindle integrated into motor
» platter attached to spindle

¢ Ideal motor properties
» reliable over years and thousands of start/stop cycles
» low vibration — so head doesn’t impact surface
» minimal wobble - improves track registration
» low noise - customer appeal
» high shock tolerance - particularly for mobile
* issue for non-motor components as well
* Bearings are a big deal - see all of the above
» ball bearings now replaced with FDB’s
» fluid dynamic bearings)
 high viscosity oll trapped In special sleeve

- 10x impr t in bble, 4db imp t in noise
- better damping & llity: larg tact surface
School of Computing
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Motors lllustrated

spindle
disk platter

stator

/N

t
% ball bearing

Ball Hub Shaft Hub  Stator

(a) (b)
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Write Heads

¢ Inductive ring based head
= electromagnet with a gap (no change over time)
» flux “leak” through gap passes through the recording medium
» desireable characteristics (improved significantly)
» narrow (maximizes tpi)
» high flux density core (maximizes M)
» Igv!)inductance electronics (increases reversal speed - max
pi
» strong - reduces contact damage
» light - easier to fly and move

subsirale
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Read Heads

+ Significant changes have occurred
* beginning - used same inductive head as for write
» field change induces a current in the coil
= MR (magneto resistive) heads sense flux directly
» MR materials change resistance
* function of angle between M and applied current flow
- AR = Cyr X R x cos?0
+ permalloy is one such material

- Cyr =-002-.003
- magnetically soft, 20% iron, 80% nickel

» constant current applied to sensor
* voltage change sensed: AV = | x AR (Ohm’s Law)

Magnetoresistive sensor
/

/

¥
£

current

Prrt

external magnetic field (H)
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¢ Clock recovery
= since 1’s occur with transitions

» there must be enough of them to recover the clock
* hence encoding required

¢ Highest AR
= occurs during the transition
= hence bias 0 to be 45 degrees for H_ ;. na = 0
= 101 read waveform

J\—\F

= MR heads drove big areal density increase starting in 1991
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Giant MR (GMR) Heads Next

¢ Composite design
= made possible by molecular beam epitaxy
= allows a free and pinned magnetic layer
» increases the resistance change
¢ due to difference in field referenced to the pinned layer
» result is another increase in areal density

Exchange layer antiferromagnetic material
pinned layer farromagnetic material

magnstization orientation

Free layer magnetoresistive sensor Non-magnetic spacer

» video http://www.research.ibm.com/research/demos/gmr/1.swf
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AFC Media

¢ IBM introduced in 2001

= quadruples areal density w/ pixie dust sandwich
» 3 atoms thing Ruthenium layer between 2 magnetic layers
» allows thicker material to appear thinner than it really is

* circumvent the widely held “superparamagnetic” effect
- beyond 20-40 Gb/In2 domalns are too small to hold thelr fleld polarity

» layers contain opposing polarities

source: IBM

» result 100 Gb/in2 (and beyond claims IBM)

http://domino.watson.ibm.com/comm/pr.nsf/pages/news
20010518 pixie dust.html/SFILE/AFC4 mov.qt
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Other Issues

* MR & GMR = separate read and write heads
= each can be separately optimized
» placed in tandem
= write wide read narrow is an option
» less sensitive to seek position

= guard bands between tracks
» required to prevent fringe field writes affecting adjacent tracks

ﬂl’&;(
vrrite : i
thin film inductive head track T !
shield !
“F\W top pole
GMR sensqr fll 2 PN $wmegap
bottom pole / shield
i

/” Wnductur“ﬁ‘ ¢readgaps
T MR

£
read [P ACK width'
media movement read gt
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Flying Heads & Head Stack Assembly

slider
connector top magnet of VCM
read-write

element

tab for

coil of VCM load/unload

bottom magnet of VCM

mounting block (arm) load beam (suspension)

wires fiom head ~ flexuré : : z
read-write element

to electronics slider
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Rotary vs. Linear Actuators

¢ Rotary better
= if twist amount of pivot is accurate enough

* for any track the head is tangential
» best signal/noise response of the read head

rigidly mounted
permanent magnet

moving
coil

rigidly mounted
bottom magnet

(a) (6)
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Single vs. Multiple Platters

* Multiple platters improve capacity
= good idea when areal density was poor
= problems:

» large % of power due to wind resistance
* o RPM and therefore bandwidth

» weight of multiple arms 2 more powerful VCM
o Similar issue for larger platter diameter
= wind resistance o area
= increases seek stroke
¢ Multiple platters better than bigger form factor
= due to power concerns
= BUT single platter disks tend to be the winner
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Start/Stop

e 2 approaches

= contact start/stop (CSS)
» let head contact platter surface as RPM’s slow
* air bearing for flying head disappears
» with today’s high areal density
* not a good Idea
* load/unload
» park head on a ramp before reducing RPM
» loading zone overlap matched to flying height
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Electronics

* Small PCB inside

= Controller

» receive commands, schedule, and report back when command
executes

» manage the disk cache
» interface with HDA - e.g. seek and sector targets
» error recovery and fault management
» power management

» start/stop control

Host-Drive Interface

Recording
ChanneIJ
Controller Actuator Spindle
VCM Motor
t Control Control

Electronics Card
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Controller Components

¢ ROM
= holds code for the P
¢ Memory controller
= w/ larger caches SRAM moved to DRAM
= simple DRAM controller & cache/write_buffer manager
¢ Host Interface
= protocol specific: FC, SATA, etc.
e Data Formatter

* move data from memory and partition into sector sized
chunks

e ECC/CRC

= usual BUT

» areal density improvement if bit compartments are allowed to
be a little flakey
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Controller lllustrated

Host-Drive Interface

- | _

Host Data ECC/CR( » Recordin g
Interface Formatter| Endec v Choaal
" [ data bus >
m Processor
:
i control bus
Memory
Cotroller controller
|_ l
4
Spindle
Servo
DFRAM Control Motor
Control
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Memory

¢ 3 distinct roles
= scratch-pad
» on power up

* load protected data from platter
- defect maps
- ID tables

- adaptive operational parameters
» queue of commands

= speed matching

» interface and disk bandwidths and timing differ
= cache

» read pages

» write buffer
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Write Channel
¢ Several duties
= limit run length of 0’s

» no transitions for too long ruins clock recovery
» several modulation codes possible
* obvious 2 bits/logical_bit (50% efficient)

* need to consider ISl (Inter-symbol Interference)
- mitigated by write precompensation

user data plug | Modulati .| Write
ECC & CRC Encoder Precomp
write
= — Write enable head
write Head/Write o
h » Write &
select Gate | Difvecl -
\
'y \
head enable one per
d — OK he.
hea
select » Decoder —’: Wit 7
LE Unsafe | e
Detector| curent
source
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Read Channel

e GMR yields < 1mv AV
= differential preamp located in the AEM
= then AGC (auto gain control)
= low pass filter to reduce high-freq noise
¢ Detection, clock recovery, & decode

To Servo Control

servo signal
user data plusl M Filter & |
ECC & CRC Decoder [¢ ] Detector Equalize

lock
L
embeddedcbck%
read Read/Write head
p— Pre-
soect . i :'Q
AL

1 WT

hed »{Di > read

select
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And Finally

e Motor controls
* simple ADC/DAC

= but with adaptive correction
» for positioning drift & thermal issues

Read 2
Channel
servo
I"signal
r Rt 1

Controller 1
I Decoder Driver
Servo |

I ion | Control

Positi
= »{ Control
targatfostion | Logic

—— e s—
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