
Managing Distributed, Shared L2 
Caches through OS-Level Page 

Allocation
Sangyeun Cho

Lei Jin
(Micro 2006)



Claims

Manage L2 cache through OS-level page 
allocation
Flexible without complex hardware 
support
Dynamically control data placement and 
cache sharing



Example Chip and Tile (Core)



L2 Cache Allocation

Traditionally S = A mod N
Proposed change to S = PPN mod N
Allows the OS to chose the virtual to 
physical mapping (PPN choses the slice)



Line Granularity



Page Granularity



Congruence Group

CGi = {phys page (PPN=j)|pmap(j) = i}
Used to map a physical page to a core.
Convenient to use modulo-N on PPN for 
pmap



Caching Schemes

Private caching
OS allocates private pages for Pi 
running on core i from CGi

Shared caching
Pages allocated from all congruence 
groups {CGi} (0<i<N-1)
Round robin or Random



Hybrid Caching Scheme

Partition {CGi} into K groups (K<N)
Allocate pages from that group for a 
core within that group
Allows sharing within a group



OS Modifications

N free lists instead of a single free list
Depends on the cache scheme

Must consider existing data mappings
Makes allocation more complex



Page Spreading

When the local L2 slice is too small for 
the working set
Need to consider data proximity to 
reduce the number of network hops
Also must consider cache pressure

number of accessed pages/cache size



Data Proximity



Bloom Filter Monitor
Keeps track of pages 
accessed

Low overhead

512-kB cache slice

8-kB page

512-byte filter

<0.5% false 
positive



Virtual Multicore!



Simulator Setup

SimpleScalar
16 tiles (4x4 mesh) (2 cycle hop)
Single issue
16kB L1 I/D caches (1 cycle)
512kB L2 cache slice (8 cycles)
2GB main memory (300 cycles)



Results



Results



Parallel Workloads



How to Kill Cache Coherence

Goal: Reduce overhead of cache 
coherence

Also some of the messiness
Granularity issue
OS independent
Lower storage overhead and 
communication


