DRAM System
Signalling, Timing, Organization

Reference: “Memory Systems: Cache,
DRAM, Disk

Bruce Jacob, Spencer Ng, & David Wang

Today’s material & any uncredited diagram
came from chapters 9 & 10
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Signal Integrity

¢ Increasingly limiting in shrinking processes
= gets even worse
» as speeds increase
» as trace length increases
¢ Muliti-drop wires are a problem
= very difficult to achieve perfect transmission line behavior in
practice
» impedance changes with
* temperature
* manufacturing variability
¢ L & C effects of the neighborhood
* signal reflections
= result is signal distortion

» made worse by noise
* also a neighborhood problem

¢ DRAM systems

= traces are long, and broadcast is the norm
» intra- and inter-device
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Transmission Line Behavior

¢ Telegraphers equations
= basically a simplified case of Maxwell’s equations
= lots of PDE’s but key is lumped transmission line
» typical view is R & G are small - e.g. lossless line
» position x and time t and hence wave velocity v
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» key is that the phase shift of a propagating signal varies with its
frequency

* lots of freq y p ts in real signals

* signal received is not the same as the signal sent
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Two Signalling Regimes
* Depends on the frequency

* we try to stay in the RC world

» high frequency components enter due to reflections
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Reflection

* Due to mismatched transmission line segments

transmission line

mismatched transmission Ik-“
interface
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Non-Terminated Reflection Ladder
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Multi-Drop Bus Complications

* Result
= as speeds increase
» #DIMMs per channel decrease
» delay added by slow rise time and let ringing settle

* hmm - faster means more delay - huh?
= socketed DIMM connector adds another discontinuity

» socket - PCB trace - connector - DIMM trace to DRAM die
few loads more loads
\ \

connector discontinuity

voltage

|
o 4 time _

more loading on the multi-drop

bus typically means more ringing

longer delay, and slower rise time
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input signal
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Other Complications

memory module

o Skew
socket
interface
Control Is

%

[
o S :J

PCB traces on system board
memory module

(data bus|

e Jitter
= small fluctuations in signal propagation velocity due to
» termperature, supply voltage, etc

¢ Inter-Symbol-Interference (1Sl)
* L & C induced cross-talk

e Bottom line
= lots of practical barriers to increasing signal speed
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Termination
¢ Key to minimizing reflections
= but DRAM needs to be cheap
» cheap SOJ and TSOP packages
* large pin C & L’s - mismatched to trace impedance

* OK for low freq - < 200 MHz

= faster requires smaller pins ==> BGA (DDR) & FBGA (DDR2/3)
¢ Another termination issue

= impedance inside vs. outside the package need to be isolated
» series termination (DDR)

t reflection effects on the DIMM trace
» programmable on die parallel termination (DDR2)

* higher speeds ==> tighter reflection constraints
* configuration register controls termination resistor switches

* removes need to time for worst case configurations (max DIMMs)
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DDR Termination
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Termination: Eye Doctor

without termination with termination
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Voltage Issues

e Low voltage swing
= saves power and potentially improves speed
= BUT: reduced noise immunity
» so do differential signalling

» problem - DRAM’s have to be cheap
* can’t afford 2x data pins

e Vref

= provide a common voltage reference used by all inputs
» adv: x+1 < 2x pins for interesting values of x

» disadv: lose the common mode rejection of differential
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DRAM Voltage Standards

¢ Series stub termination logic

= SSTL_2 - used for 2.5v DDR parts
= SSTL-18 - used for 1.8v DDR2 parts

¢ Similar idea just different standards
= for SSTL_2, Vref = 1.25v
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Rambus Versions
¢ RSL - Direct RDRAM parts

* Vref based but with lower swing

 DRSL - full differential, bidirectional, point to point

* signaling interface must be isolated from core (mats)

= fast but costly due to additional non-mat interface circuitry
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XDR signaling System (DRSL)
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Timing
¢ Modern DRAM is synchronous

= clock also a victim of

» skew, jitter, signal integrity

» broadcast nature means big L & C components
= 3 clocking regimes

» global clock

+ slow since timing margin accomodates worst case

» source synchronous clock forwarding
 RDRAM and DDR

» phase or delay compensated clocking

¢ PLL or DLL synchronization in newest parts
- DDR (DLL), XDR (PLL)

¢ Memory contoller gets more complex

= responsible for timing and command sequence control
» needs to stay in the center of the eye
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Control Addr vs. Data Bus

¢ Control and Address information is broadcast
= higher bus load means slower
e Data is pseudo point-to-point
* memory module knows if it’s the addressee
» others go to Hi-Z connect to data bus
= key to allowing the DDR scheme to work

= DDR does complicate things however
» mem_ctl now needs to deal with 90 degree phase changes
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Column Read & Write in DDRx

command assertad pacovnan
for full clock cycle write timing

e f X f R SR S\ 'S =

CMD "'Mrgc

DQg
DQ 4

DQ .1

DQ pys

read data: edge
aligned with rising

window
edge of clock cycle

ta 1o
data skew and jitter
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DRAM Organization
¢ Remember

= terminology varies with standard
» e.g. Rambus vs. JEDEC

* and even within JEDEC by vendor to a lesser extent
¢ In general

Channel? Rank? Bank? Row?

Column?

Data

Channel Address =?

Rank Address = ? Memory
Bank Address = ? Controller HH
Row address =? i

i
Column Address =7 &

Sequence Eﬁﬁg ﬁgﬁ Eﬁ% EEE
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Vendor Channel Variation

One “physical channel” of 64 bit width
One DMC: One logical 64 bit wide channel

Two “physical channels™ of 64 bit wide busses

One DMC: One logical 128 bit wide channel

- - [,‘-H[)HANI
Intel 1850 L

system controller

Two “physical channels” of 16 bit width

One DMC: One logical 32 bit wide channel

Two Channels: 64 bit wide per channel

=D HUHAD,’.I

16 ,{D-RDRAM
.64 (CromA]
N 64 e ~~[D-RORAM |
k] DMC [————* DDR2 s | " D-RDRAM
£ =g =
% g 64 2 = 8 D-RDRAM
3 I A : 5 oMe 1
Se DMC DDR2 S DMC 64 D-RDRAM |

=a [N A =
g g ] D-RDRAM

D-RDRAM

Two Channels: 64 bit wide per channel

DMC::= DRAM Memory Controller
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Memory Read
. . . Bus Clock Channel non-ECC ECC Prefetch Latency
DR‘?M:""’ D'MTM Se"c" Rate %':fek Bandwidth Channel Channel  Buffer Vvdd Typical D'm"
yp yp (MHz) (GBIs) Width  Width  Width {bus
(MHz)
cycles)
DDR200  PC-1600 100 100 16 64 72 2 25 2:3 184
DDR-266 ~ PC-2100 133 133 2133 64 72 2 25 2:3 184
DDR-333  PC-2700 167 167 2,667 64 72 2 25 2:3 184
DDR-400  PC3200 200 200 32 64 72 2 25 2:3 184
DDR2-400  PC2-3200 100 200 32 64 72 4 18 3-9 240
DDR2-533 PC2-4200 133 266 4.267 64 72 4 18 39 240
DDR2-667 PC2-5300 167 333 5333 64 72 4 1.8 39 240
DDR2-800  PC2-6400 200 400 6.4 64 72 4 18 39 240
DDR3-800 PC3-6400 100 400 6.4 64 72 8 15 ? 240
DDR3-1066 PC3-8500 133 533 8.53 64 72 8 15 ? 240
DDR3-1333 PC3-10600 167 667 10.67 64 72 8 15 ? 240
DDR3-1600 PC3-17000 200 1066 18.06 64 72 8 15 ? 240
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