DRAM
Overview & Devices

Reference: “Memory Systems: Cache,
DRAM, Disk

Bruce Jacob, Spencer Ng, & David Wang

Today’s material & any uncredited diagram
came from chapters 7 & 8
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Intended CS7810 Plan

* 5 weeks on memory systems

* 3 weeks on DRAM
» overview & devices
» system signalling
» system organization & access protocols
» DRAM memory controllers
» FBDIMM and BoB approaches
» memory system design Analysis
* 1 week on disk
» physical and data layers
» design trade-offs, interfaces, & futures
* 1 week on NVRAM or URAM new technologies

» got moved up to the first week
¢ FLASH - the current dominant technology
« NVRAM/URAM options on the horizon
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Memory & Storage are Different

¢ Memory hierarchy (7810 focus now)
= multiple levels of cache
= main memory
» for now it’s DRAM
= disk
¢ Storage (additional component next year?)
= logical view: file system and backups
= physical view: disks & tape for now
= operational view: huge complexity
» reliability, availability, serviceability (a.k.a. RAS)
» migration issues, cabling, cooling & power, interconnect

» today’s datacenters often have more processors in the storage
subsystem than in the compute subsystem

¢ What should Google care more about: storage or compute?
= food for thought
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Key Item to Remember

¢ It is easy to predict SRAM behavior

= even though discrete DRAM may well disappear in this
decade

» since cache buses (BSBs) are almost extinct now

Hard to predict DRAM behavior
= probabilistic resource availability

= performance depends on controller and device model

» small controller differences show up as big performance
differences

Disk performance is probabilistic as well
Plus
= |ots of intermediate buffers, prefetch, ... issues as well
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Simplified DRAM

Orthogonal address
to save pins & cost
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I1t’s All about Mats

¢ DRAM devices come in several flavors
= interface & speed: we’ll deal with these later
= width
» x4 & x8 are highest density die
* used in price sensitive applications like PC’s

» x16 & x32
* higher per bit cost used in high performance systems

¢ DRAM chip = lot’s of memory arrays (mats)

= mats operate under several regimes
» unison
* each access targets one bitmat
- X4 accesses 4 mats
» independent

* mats organized as subsets to te banl
- concurrent bank access Is the Idea

* intra-bank mats operate in unison
» interleaved banks
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Mat & Width Organization
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Slow Mat Problem

* Mat access is slow
= high-C word and bit lines
» bigger = slower
* C for wire is linear in length at same width
+ Cgate is linear with size of row or column in the mat
¢ Interleave to speed up
= mid-60’s hack used on IBM 360/91 and Seymour’s CDC 6600
» essentially a form of pipelining
= if interface is n times faster than mat latency interleave n banks

» should be able to make things arbitrarily fast

* in theory yes - in practice no
- constraints: Jitter, signal Integrity, power

= multiple on-die banks
» may be internally or externally controlled
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Ranks & Banks vs. DRAMs & DIMMs
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JEDEC Interface

address width depends on DRAM capacity
control: RAS, CAS, O ble, CLKenable, etc.

ILIINIIN]

NN
N

S,

Chip select goes to every DRAM in a rank N 64 bits typical

Separate select per rank - 2 per DIMM common wider in high-end systems

See any problems on the horizon with this model?

!yj School of Computing 1" CcS7810

University of Utah

Memory Controller Issues

e DRAM control is tricky
= CPU prioritizes memory accesses
» transaction requests send to Mem_Ctl
= Mem_Ctl

» translates transaction into the appropriately timed command
sequence

* transactions are different
- open bank then it’s just a CAS
- no open bank then Activate, PRE, RAS, CAS
- wrong open bank then write-back and then ACT, PRE, RAS, CAS
- lots of timing issues

* result: latency varies
- often the command seq can be

sallad

or even restarted

£ . PR

- ays wins
» now moving onto the CPU die
* multi-core and multi-mem_ctl involves a lot of issues
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DRAM Evolution
¢ Not that important

* naming conventions vary by vendor to some extent

» Clocked - treat DRAM as a really slow SRAM
» Asynch DRAM - access and wait

« still clocked but the timing provided by the command lines

» Fast Page Mode

+ add latches to the sense amps to form row buffer
» EDO

+ add latches to output drivers so data stays valid
» P/BEDO

+ add counter to cycle through successive width sized nibbles

» SDRAM - mid 90’s - the bulk of the action now
* clock now controls row select circuits as well
+ DDRx variants still SDRAM just higher bandwidth
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DRAM Conundrum

¢ Cost/bit vs. Latency
= widening memory gap
» CPUs faster by 58%l/yr
» DRAM faster by 7%/yr - now going even flatter
» multi-core makes this problem much worse
= current industry trend
» minimize cost through density improvements
» so we’re stuck with long latency
e Focus on improving throughput
= enter DDRx and Rambus
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RDRAM Throughput Idea
¢ System interface solution rather than a fundamental
technology

= narrow, split request-response bus
» addr, data, ctl, selects all mux’d on the same bus
» uses the DDR model
» initially 1 byte wide and ran at 250 MHz

* limited concurrency so redesigned ==> concurrent RDRAM
» C-RDRAM

* looks a lot more like a JEDEC interface now

+ simplifies transaction scheduling

+ shares a row buffer between adjacent banks
- limits open bank options but saves on cost
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Evolving RDRAM
e Widen data & address + pump up the clock
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Other RAMBUS Wrinkles

* Packaging
= pins on one side of die so chips can be inserted rather than just
DIMMs

» not clear if anyone bought into this
¢ Interesting dual clock timing model in the patent
= usage is still TBD
e Variable request response latency

= Mem_Ctl can specify
= usage: variable packet sizes & higher utilization of the narrow bus
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Mainstream Throughput Idea: DDRx

¢ Use both clock edges

= DDR transfers 2 bits per cycle per lane
» DDR2 transfers 4
» DDRn transfers 2"
» signal integrity and power limit clock speeds
« particularly on long FR4 wire traces
¢ Also add source synchronous clocking - enter DQS

= timing variance creates synchronization issues
» DDR device uses DLL/PLL to synch with Mem_Ctl master clock
* note skew depends on where the DIMM sits in the chain
» need to latch in the center of the data “eye”

= other sources of timing uncertainty
» manufacturing variation, temperature, Miller side-wall effect, trace
length
* delay proportional to RC
* power proportional to CV2f
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Optimizing for Latency

¢ Virtual channel memory (VCDRAM)

* add SRAM cache for segments
» manage by mem_ctir
» adds prefetch and restore commands to the mix
» latency better if cache hit - worse on a miss

¢ Enhanced SDRAM (ESDRAM)

= put latch before column mux rather than after as in EDO
» expensive since it’s a row wide rather than a column wide
» allows

* overlap of row precharge without closing existing row

+ allows a write-around option which may be useful in write-back
cache models
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Optimizing for Latency (cont’d)

¢ MoSys 1T-SRAM (current low latency winner)
= catchy name but it’s still 1T+1C
= wraps SRAM interface around DRAM core
= large number of small independent banks ==> lower latency
» increased control circuitry ==> reduced density ==> increased cost
= niche market in game systems
¢ Reduced Latency DRAM (RLDRAM)
= has no DIMM specification
= SRAM like interface Raddr and Caddr on different pins
¢ Fast Cycle DRAM (FCRAM)
= breaks row into subarrays - smaller is faster

= moves some Caddr bits to Raddr
» does have a DIMM spec

» faster clock and higher bandwidth - obvious limits on the horizon
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Disturbing Trend

* DIMM capacity going up

= process improvements yield more bits/die
e DRAM channel speed going up

= DDRn
¢ # of DIMMs per channel going DOWN!!

= SDR - 8 DIMMs/channel

= DDR - 4 DIMMs/channel

= DDR2 - 2 DIMMs/channel

= DDRS3 - 1 DIMM/channel and higher latency
» isn’t this a lower bound?
» adding channels is expensive in CPU pins
* remember mem_ctl is on chip now and for good reason
= Why?
» stub electronics problem on a JEDEC broadcast bus
» gets worse if bus speed increases - it’s the di/dt thing
* Problem essence
» not enough memory capacity per socket
» huge server problem today
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intel’s FB-DIMM Compromise
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FB-Dimm Problems?

e There are many

= daisy chain causes varied response time

= bit lane retiming additional latency problem
¢ Already considered a 1-trick pony

¢ Enter BoB - Buffer on Board - the new Intel hack
* use a tree rather than a daisy chain for 4x DDR3
= BoB placement
» motherboard or on a memory card riser
= problem - another buffer stage in the memory hierarchy
» OK if prefetch strategy is working for you
¢ AMD has/had? a similar variant

= Socket 3 Memory Extender (G3MX) micro-buffer
» effort now seems to have been cancelled

School of Computing
W University of Utah 24 CS7810




DRAM Systems Issues 1

¢ Architecture and scaling

* DDRn causes 2" prefetching
» 1/O side faster but mat side is wider
» implies wider cache lines

* we know the issues involved
¢ Timing fundamentally limited by signal integrity issues
= lots can be done here but impact is cost/bit increase
¢ Pins vs. protocol
= pin count has large cost adder

= use them more efficiently ==> protocol change
» JEDEC moves slowly
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DRAM Systems Issues 2

¢ Power and Heat
= the biggest concern now and in the future most likely
» early DIMMs consumed about 1W
» FB-DIMMs now at 10W
¢ Servers
= goal
» 3x more channels and 8x more DIMMs per channel
= looks like 250 W per socket just for memory
» huge problem now

= definite time for a rethink

» problem
¢ industry momentum
* standards
* DRAM commodity ==> super low margins
- Is a costly p 1t
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Slight Change of Focus

¢ Very brief device technology overview
* background for what comes later
* Key issues
= leaky devices
= process differences
= refresh requirements
= how to build that pesky capacitor
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64 Mbit FPM DRAM (4096x1024x16)
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DRAM Celi
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Leakage & Refresh
e Transistors are not ideal switches
= leakage currents in DRAM processes are minimized
» but not to 0
= leakage currents increase as Tsize goes down
» tricky balance of Vth, Vdd, and process
» additional increase with temperature
* industry target - refresh every 32 - 64 ms
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Folded vs. Open Bit-Line

Folded: 8F2 - 2 bit line per cell
6F2 version shipped by Micron using MIM
(metal insulator metal C) in 2004

Open: 6F2 - 1 bit line per cell
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Issues
* Open
= requires dummy array segments at mat edge
» balance C characteristics of bit-line pairs
* more noise susceptibility
= combine to dilute the cell size advantage
* Folded

= differential sense amps have better common-mode noise
rejection properties

» e.g. alpha particle or neutron spike shows up on both sides
= current industry focus

» new folding strategies show up regularly in circuits venues
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Sense Amps

* Small stored charge requires high sensitive amps

* use differential model
» reference voltage precharged to half-way mark
» then look at which way the charge goes to determine value
* noise margins must exist and trick is to keep them small

+ problematic as devices shrink

* Roles
= 4z basic sense value
= 2: restore due to the destructive read

» 2 variants in play
* restore instantly or restore on row close

= 3: act as a temporary storage element (row buffer)

» how temporary depends on restore choice
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Sense Amp Operation
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Sense Amp Waveforms
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Decoders & Redundancy

¢ Defects occur and yields have to be high
* rules of a low margin business

¢ Redundant rows, columns, and decoders
= fuses are used to isolate defective components
= appearance is of a fully functional mat

* fuse set
» burn in, test and then fuse set
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Packaging, Performance, Cost

| BGA
"o soJ TSOP
(more pins, higher datarate, higher cost) .
{ITRS2002 | 2004 | 2007 @ 2010 @ 2013 | 2016
process 20 65 45 32 22
(nm)
CPU pin 2263 3012 4009 5335 7100
count
cents/pin 1.88 1.61 1.68 1.44 1.22
DRAM pin 48-160 48-160 62-208 81-270 105-351
count
cents/pin 0.34-1.39 0.27-0.84 0.22-0.34 0.19-0.39 0.19-0.33

Pressure runs wild!!

L)
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DRAM vs. Logic Process
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Hybrid Processes Coming

¢ IBM was the pioneer
= start with logic process

* add extra layers to create high-C DRAM cells

» multiple oxide thicknesses
» fast leaky transistors
* slow less-leaky transistors

» enables eDRAM

» also helps with power issues
* leakage is a big deal
* only use fast transistors on the critical CPU path
* use slow T’s for non-critical path and memory blocks

¢ Current usage in transition
= from high-performance SoC’s to mainstream CPU

» issues do become more tricky as feature size shrinks
» but power is the nemesis so you do what you have to
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