
Page 1

1 CS7810
School of Computing
University of Utah

DRAM Memory Controllers

Reference: “Memory Systems: Cache,
 DRAM, Disk

Bruce Jacob, Spencer Ng, & David Wang

Today’s material & any uncredited diagram
 came from Chapter 13

2 CS7810
School of Computing
University of Utah

Basic Requirements
•  Manage data movement to/from DRAM

  device level
»  electrical & timing restrictions

»  error correction
•  typical parity just means retry and flag

  system level
»  arbitration fairness

•  will be necessary in multiple core/mem_ctlr configurations

»  maximize system performance
•  command scheduling

•  multiple conflicting performance metrics however
–  heat, power consumption, latency, bandwidth

•  Lots of options increase complexity
  variety of timing parameters & command sequences

»  specific to the target device

  scheduling for some optimality target

Page 2

3 CS7810
School of Computing
University of Utah

Top-Level View
•  3 top-level policy/strategies

  row buffer management policy

  address mapping scheme
  memory transaction and command ordering strategy

•  Large body of research
  partially due to huge timing differences

»  processors get faster & DRAM is fairly flat

  seems to be reported primarily by the circuit community
»  according to recent look by Dave and Manu

•  ISPLED – Int. SymP. on Low Power Electronics and Design

»  and a bunch of reference cores put out by industry

»  main game played by northbridge chipset vendors

4 CS7810
School of Computing
University of Utah

For Starters
  pubs

»  bank address mapping
•  Lin et al. “Reducing DRAM latencies …” HPCA 2001

•  Zhang et al. “Breaking address mapping symmetry …” JILP 2002

»  command ordering schemes
•  J. Alakarhu “A comparison of precharge policies with modern DRAM

 architectures” ICECS. v. 2, pp. 823-826, 2002.

•  F. Briggs et al. “Intel 870: ….” IEEE Micro 22(2), 2002

•  V. Cuppu et al. “A performance comparison …” ISCA99.

•  Hur & Lin “Adaptive history-based memory schedulers” MICRO04

•  Rixner “Memory controller optimizations for web servers” MICRO04

•  Rixner et al “Memory access scheduling …” ISCA 2000.

  today
»  more general discussion of the issues

Page 3

5 CS7810
School of Computing
University of Utah

Basic MC Components
•  Note

  as memory access cost increases w.r.t. compute on CPU’s
»  combining transaction and command scheduling is important

  address translation targets rank and bank
»  transaction turned into a series of DRAM commands

•  optimization options occur with interleaved transactions
–  while still respecting device timing restrictions

6 CS7810
School of Computing
University of Utah

Row Buffer Management
•  Open-Page

  good
»  both temporal and spatial locality exist in access pattern

•  spatial: amortizes large row activate energy cost

•  temporal: energy to keep row open results in improved bandwidth
–  latency limited by tCAS only

  bad
»  energy: delay to same row access is infrequent

»  time: precharge, activate, access if target row is inactive
•  better to perform a col-rd-precharge command when new row is

 known

  scheduling issues
»  similar to dynamic instruction issue

•  performance increases with a larger window
–  except when window is always slightly filled

–  multi-core/MC changes the probability

•  dependent and anti-dependent issues must be tracked
–  note write buffer in XDR (sound familiar?)

Page 4

7 CS7810
School of Computing
University of Utah

Closed Page
•  Favors random access patterns

  more likely
»  large processor count & large main memory capacity

•  e.g. database in DRAM datacenter

•  many-core devices with multiple MC’s

•  highly threaded workloads break the temporal locality target

»  embedded systems
•  DRAM access is rare

•  energy cost of keeping row open breaks the energy/thermal
 threshold

  less likely
»  if large number of banks are kept open

•  e.g. Direct RDRAM – 32 ranks x 2 banks/rank per channel
–  hence choice for the EV7

–  which didn’t make it commercially for different reasons

•  each thread/core tends to hit the same bank

•  AND energy/thermal limits aren’t surpassed

8 CS7810
School of Computing
University of Utah

Hybrid Row Buffer Management
•  Reality – closed vs. open choice isn’t static

  best choice depends
»  access pattern and rate

•  ratio of tRP:tRCD+tRP

–  row precharge interval, row cmd to data ready at sense amps delay

–  move to close page if falls below some (possibly dynamic) threshold

•  enter history tables and timers
–  timer can control the sense amps keeping the page “open”

–  wait too long and precharge since temporal locality has failed

  one choice doesn’t fit all
»  rank, bank, and channel patterns may vary

»  typical balance point argument
•  increased MC complexity & cost for how much gain

–  gain is metric specific: power, effective bandwidth, latency, …

•  plus complicated decision process may slow DRAM command issue
–  since DRAM’s are slow this has been less of a constraint

Page 5

9 CS7810
School of Computing
University of Utah

Rbuff Mgmt: Performance Impact
•  Proper Approach

  includes
»  in depth analysis of queuing delays

»  simulation of the memory controller
•  using a variety of real and synthetic work loads

»  various scheduling approaches
•  might also include thread phase prediction

»  incorporation of thermal management issues
•  not directly a performance thing but can’t be ignored

»  refresh & associated resource availability issues

10 CS7810
School of Computing
University of Utah

Rbuff Mgmt: 1st order approximation
•  Less sim based & more analytical

  using timing parameters (see last lecture)
»  normally idle close page approach

•  read latency is tRCD+tCAS

»  open page read latency
•  min: tCAS for access to an active row

•  max: tRP+tRCD+tCAS for bank conflict

•  if x% of accesses hit an open row
–  average read latency = x*tCAS+(1-x)*(tRP+tRCD+tCAS)

–  crossover for open vs. close page

–  tRCD+tCAS = x*tCAS+(1-x)*(tRP+tRCD+tCAS)

–  x = tRP/(tRP+tRCD)

–  SURPRISE!!

–  for Micron DDR2 UDIMMs (U for Unbuffered)

–  tRP = tRCD = see next slide for values

–  therefore break even point is x = 50%

»  argues against trying too hard to hot row schedule

Page 6

11 CS7810
School of Computing
University of Utah

Micron Data Sheet Excerpts

12 CS7810
School of Computing
University of Utah

Rbuff Mgmt: Power Impact
•  Performance isn’t everything

  power is topping the charts these days

  consider a RDRAM system
»  16 x 256 Mbit Direct RDRAM devices

•  3 modes
–  active (all banks active)

–  standby (active but takes longer to bring back to active and then read)

–  NAP (inactive banks so row access must be redone)

Condition Current mA Relative
1 device read active, 15 in NAP 1195 1
1 device read active, 15 in standby 2548 2.1
1 device read active, 15 also active 3206 2.7

Missing: cost to reactivate a row but close page appeal is clear

Page 7

13 CS7810
School of Computing
University of Utah

Address Mapping
•  Main memory so all addresses are physical

  but how do they map to channel, rank, bank, row, & col ID’s

  general goal: performance
»  map adjacent requests to maximize command parallelism

•  channels are parallel

•  ranks require tOST switching time but are otherwise parallel

•  decent overlap to different active rows in different banks

»  key is to avoid bank conflict
•  which is the biggest sequential penalty: tRP+tRCD+tCAS

»  unlike row buffer management
•  address mapping can’t be dynamically changed

•  physical address to dram channel, rank, bank, row, col is fixed
–  simple swizzle of the Padr bits

•  virtual to physical address still done by the TLB
–  but OS manages TLB

–  ?? any leverage to be had here – not clear ??

  power goal
»  different options

14 CS7810
School of Computing
University of Utah

Alternative Viewpoints
•  Impulse (Utah)

  use an extra level of indirection to support multiple strides
»  get the cache line you want

•  not just the contiguous block that you usually get

»  use shadow memory (not in the physical address map)
•  index of actual targets for user defined access patterns

•  this “map” changes based on strides in play

»  memory controller
•  controls map to minimize bank conflict

•  FB-Dimm
  on DIMM ASIC could be impulse like

»  each DIMM is a channel

»  Impulse like game could be played
•  albeit with a bit more control logic in the AMB chip

Page 8

15 CS7810
School of Computing
University of Utah

Address Mapping Parameters
Symbol Variable Dependence Description

K Independent # of channels in system
L Independent # of ranks per channel
B Independent # of banks per rank
R Independent # of rows per bank
C Independent # of columns per row
V Independent # of bytes per column
Z Independent # of bytes per cache line
N Dependent # of cache lines per row

Total Memory Capacity = K*L*B*R*C*V
N = CV/Z & CV= NZ (since we care about cache lines)

Since we’re whacked on powers of 2 let:
L =2l, B=2b, etc. for simplicity
non powers of 2 could be used but it wastes address bits

16 CS7810
School of Computing
University of Utah

Swizzling k+l+b+r+c+v Address Bits
•  Baseline mapping

  open page – performance goal assuming locality
»  stripe adjacent cache lines across different channels

•  then map to same row, bank, and rank
–  avoids tOST & bank conflict for as long as possible

»  address bits partitioned
•  r:l:b:n:k:z (high order addr. bits spec. row ID avoid bank conflict)

•  note z only needs to be used in critical word first return systems
–  initialized burst size feature removes need for z

  close page
»  stripe adjacent cache lines across channels

•  same as open page BUT pipeline delays due to bank close
–  prefer to then stripe over banks, then ranks

»  address partition
•  r:n:l:b:k:z (n in 2nd high order spot avoids delay with row precharge

 to next cache line)

Page 9

17 CS7810
School of Computing
University of Utah

Expansion Capability
•  Many systems allow user to buy more memory

  for most systems this means more ranks
»  e.g. box comes with 1 2-rank DIMM

•  add another 2-rank DIMM

»  hence l is mapped to the high order addresses
•  expansion comes at the cost of rank parallelism

–  when application uses a subset of the available ranks

–  problem self-mitigates as tOST goes up

  other cases – multiple channels can be independently
 configured

»  a.k.a. “assymetric channels”

»  now channel (k) bits become high order as well
•  reduced channel parallelism results

  new baselines
»  expandable open page: k:l:r:b:n:z rather than r:l:b:n:k:z

»  expandable close page: k:l:r:n:b:z rather than r:n:l:b:k:z

18 CS7810
School of Computing
University of Utah

Example: Intel 82955X MCH
•  MCH = memory control hub

  2 memory controllers
»  each independently control 2 DDR2 channels

•  each channel supports up to 4 ranks

  possible rank configurations
Rank
Cap.
MB

Config
banks,

rows,cols,
colsize

Rank
dev.cap x
dev.cnt

Rank
config

BxRxCxV

Bank
Addr
bits

b

Row
Addr
bits

r

Col
Addr
bits

c

Col
Addr

Offset
v

128 4x8192x512x2 256 Mb x 4 4x8192x51
2x8

2 13 9 3

256 4x8192x1024x2 512 Mb x 4 4x8192x
1024x8

2 13 10 3

256 4x8192x1024x1 256 Mb x 8 4x8192x
1024x8

2 13 10 3

512 8x8192x1024x2 1 Gb x 4 8x8192x
1024x8

2 13 10 3

512 4x16384x1024x1 512 Mb x 4 4x16384x
1024x8

2 14 10 3

Page 10

19 CS7810
School of Computing
University of Utah

MCH Options
•  1 or 2 DIMMs per channel

  if 2: ranks must be identically configured

•  address mapping supports open page system
  but with some flexibility

»  to account for configuration

»  support for symmetric or assymetric channels
•  uses rank_config_registers

–  support rank by rank address mapping

  symmetric
»  consecutive $-lines map to alternating channels (k)

  assymetric
»  channel capacities vary

•  phys addr maps 0:CHNL0cap and then to CHNL1cap
–  keeps access in single channel unless request size spans both

20 CS7810
School of Computing
University of Utah

MCH Overview

Note: capacity the same even though
rank config is different – still works for
MCH symmetric mode

Note: channel cap and rank count differ so
 must go asymmetric

Page 11

21 CS7810
School of Computing
University of Utah

MCH Register Usage
•  Set at system initialization time

  individual mapping by rank
»  addr. mapping regs

•  contain capacity and organization parameters of the DRAM devices

»  rank addr. boundary regs
•  resolve a physical address to a rank

»  rank architecture regs
•  org of the devices in each rank

•  disambiguates bank, row, and column addresses

  note this does not include the channel address
»  mapped separately

•  depends on sym. vs. assym. mode

•  use channel boundary regs to get to proper controller

22 CS7810
School of Computing
University of Utah

Per-rank Mapping

classic
expandable
open page
k:l:r:b:n:z

a bit different
l:r:b:n:k:z
due to cache
line interleave

Page 12

23 CS7810
School of Computing
University of Utah

Bank Address Aliasing
•  Problem

  2 large power of 2 arrays accessed concurrently
»  target is actually the same bank so bank conflict

»  matrix multiply of 2 217B arrays in MCH would conflict
•  since bank addr is paddr[14:16]

•  Solutions (no works always solution however)
  SW: use some hash function
  HW: Lin 2001 & Zhang 2000 had a similar idea

24 CS7810
School of Computing
University of Utah

Write Caching
•  Usual benefit

  writes are not typically critical
»  defer if it helps the schedule

  still have to check the cache on a RAW access pattern
»  adds some complexity

»  also delays read if conservative
•  e.g. check cache and then go to DRAM

•  wise choice in power constrained environments
–  go eager otherwise

•  DRAM specific benefit
  high speed buses take time to turn around

»  bigger issue in DDRx where x>=2 land

»  hence RWRWRW… transactions are slow

•  In use
  common in XDR based RDRAM systems

  Intel i8870 controller does it for JEDEC systems

Page 13

25 CS7810
School of Computing
University of Utah

Request Queues
•  MC translates accesses to memory commands

  tries for optimal schedule as well

•  Priority is important but based on what?
  request priority

  current resource utilization

  bank address

  spread the load or heat

  etc.

•  Common to use request queues per bank
  round robin over banks

  reorder commands within the queue
»  more on this shortly

  useful for high memory pressure systems
»  extra complexity for little gain in low pressure situations

26 CS7810
School of Computing
University of Utah

Refresh Management
•  Mentioned previously to some extent

•  Simple MC takes on the job
  refresh one rank at a time

»  all banks all rows

  keep row-interval registers
»  ignore refresh when certain intervals don’t have valid data

•  Self-refresh
  capability exists in certain devices

»  each device self-refreshes based on a timer

»  MC can be put to sleep in low pressure scenarios

  temperature compensated refresh counters exist
»  MobileRAM is one example

Page 14

27 CS7810
School of Computing
University of Utah

Agent Centric Q’ing
•  Key schedule policy is fairness

  usually interpreted as starvation free

  agents have different priorities
»  I/O, CPU, GPU

»  read, write, refresh

»  latency vs. bandwidth needs

28 CS7810
School of Computing
University of Utah

Feedback Directed Scheduling
•  Similar to branch prediction idea

  let history predict the future

  approach hasn’t been as thoroughly explored for DRAM
 however

»  as DRAM becomes the bottleneck this will get some attention
•  see Hur & Lin Micro04

»  as memory controllers move onto the CPU
•  history state is cheaper to export to the MC

•  as is agent ID (thread, Iaddr, …?)

