FB Dimm's

Reference: "Memory Systems: Cache, DRAM, Disk

Bruce Jacob, Spencer Ng, \& David Wang
Today's material \& any uncredited diagram came from Chapter 14

School of Computing
University of Utah

The Problem

- Multi-drop busses don't scale well
- demand for higher memory bandwidth continues
- traditional memory architecture scaling
" can happen in speed or capacity but not both
market expectation
- more for the same price
- OR more for less
- Intel's idea but solution is a common one
- replace with point to point signaling
" mitigates signal integrity problem
" introduces the multi-hop problem
- Short story
- already has proven to be problematic
- Intel now moving to BoB (Buffer on Board)
» essentially a multi-spigot FB Dimm idea

ITRS Comparison Humor

Remember in 2001:
frequency wars were still ongoing, and power
worries were just starting
to peek over the horizon

2001 ITRS					
	2004	2007	2010	2013	2016
Process (nm)	90	65	45	32	22
CPU GHz	3.99	6.74	12	19	29
Mlogic T/CM ${ }^{2}$	77.2	154.3	309	617	1235
Hperf pin ct.	2263	3012	4009	5335	7100
HP cents/pin	1.88	1.61	1.68	1.44	1.22
Mem cents/pin	0.34-1.39	0.27-0.84	0.22-0.34	0.19-0.39	0.19-0.33
Mem pin ct.	48-160	48-160	62-208	81-270	105-351
CPU cost/pkg	42.5444	48.4932	67.3512	76.824	86.62
$\begin{array}{\|c\|} \hline \text { Max Mem cost/ } \\ \text { pkq } \\ \hline \end{array}$	2.224	1.344	0.7072	1.053	1.1583
$\begin{array}{\|c\|} \hline \text { Min Mem cost/ } \\ \text { pkg } \end{array}$	0.1632	0.1296	0.1364	0.1539	0.1995
2008 ITRS					
		2007	2010	2013	2016
Process (nm)		68	45	32	22.5
CPU GHz	$\begin{aligned} & \hline 12 \text { inv } \\ & \text { delays } \end{aligned}$	4.7	5.8	7.3	9.1
Mlogic T/CM ${ }^{2}$		154	309	617	1235
Hperf pin ct.	33\% P \& G	3072	3072	3072	3072
HP cents/pin		.69-1.13	.60-1.20	.51-.87	.44-.75
Mem cents/pin		.27-. 5	.23-.44	.20-.38	.20-. 32
Mem pinct.	Unspecified in 2008 ITRS Update				
CPU cost/pkg					
$\begin{array}{\|c\|} \hline \text { Max Mem cost/ } \\ \text { pkg } \end{array}$					
$\begin{array}{\|c\|} \hline \text { Min Mem cost/ } \\ \text { pkg } \\ \hline \end{array}$					

Note in 2008:
-lack of specification on memory packaging and cost -no frequency prediction other than 12-inverter delay

FB Dimm Idea

- Need to create higher bandwidth
- DDR2
" $\mathbf{4 0 0}$ MT/s configured
- up to 4 two-rank DIMM's
- DDR3
» $\mathbf{8 0 0} \mathbf{~ M T} / \mathrm{s}$ configured
- 1 2-rank Dimm
- Move multi-drop bus to the DIMM
- daisy chain the DIMMs using an AMB ASIC
" AMB ::= Advanced Memory Buffer
- actually much more than a buffer
- also does bit-lane retiming
- packetized frame-relay protocol
" AMD duties
- extract DRAM commands from frame
- control DRAM devices (2ndary mem.ctir)

Replacement Strategy

THIS

FB Dimm Problems

- Device compatibility (the usual boat anchor)
- still need
" JEDEC standard - adopted after Intel push
» use commodity DDR2\&3 components
" retain user configuration flexibility
- However
- significant increase in idle system latency
- increased power consumption
" big problem
- AMB cost adder
" incompatible with DRAM market economics
- Result
- lots of resistance from system manufacturers
" remember Intel makes the parts not the system

The AMB ASIC

- One hop in a daisy chain
- role (incoming side $=$ southbound channel)
" examine frame contents
" is it for me?
- if so broadcast to the DRAM's on the appropriate rank
- marshal write data to the DRAM's
- read data converted into frames to place on northbound channel
- if not - recondition signals and pass it on
- classic store and forward network with a wrinkle
- wrinkle is essentially cut-through routing
- forward before digest and check
- reduces latency but increases affected scope of errors
- role (outbound = northbound side)
" encapsulate data burst into frames
- this involves a significant amount of bit-lane retiming
- Benefit
- 6x FBD signaling rate over DRAM devices for DDR2

2 Rank FB-Dimm Diagram

DDR2 clock rate $=667 \mathrm{MT} / \mathrm{s}$

FB Dimm Mesochronous Timing

- Multiple clock domains
- synchronous w.r.t. each other
- BUT - phase relationships are not strictly defined
" hence the need for bit-lane retiming
- skew and jitter exceed bit cycle times
- removes need for trace length equality
- "stub electronics" problem
- a major stumbling block in non-FB DDR2 memory systems
- simplifies interconnect design
- at the expense of active "correct it" silicon
» north- and south-bound lanes designed to be timing independent
- As always
- the devil is in the details
" so let's look at some of them

Signaling \& Timing

- Not all that different - borrowed technology
- Northbridge
" likely contains both the PCIe and Mem_CtIr
" so use PCle style signaling
- well understood technology
- 1.5v differential signaling
- optimized for FR4 PCB's

University of Utah

Clock Data Recovery

- Common problem
- clock doesn't have known phase relationship with data
» one known technique
- recover clock from the data signal
- but this requires a known number of signal transitions
- real data doesn't look this way so encoding is required
- 8b/10b Fibre Channel or HyperTransport scrambling models for example
- provided DC balance - electrically important
- simplifies clock recovery by insuring that enough transitions occur per some unit of time
" result
- use transitions to recover clock
- use recovered clock to determine data
- implied: clock skew+jitter doesn't change wildly in short time frame
- Actual FB-Dimm standard uses a simpler approach
- no inter-lane phase relationships specified
" does specify transition density
- 6 transition minimum in a 512 bit frame

Unit Interval

- DDR \& 6:1
- 12 UI's/DRAM clock cycle form the FB-Dimm "frame"

- Bit lane independence
- cause: latency and path length variations
- result: several Ul difference in lane burst arrival at an AMB
- FB-Dimm and AMB requirements
- logic to deskew the data across the independent bit lanes
- danger: increased latency = de-skew-time*hop-count

Benefit: Less Routing Restriction

DDR2 SDRAM channel routing

FB-DIMM channel routing

Source: Intel

Resync Latency Cost

- Forwarding delay dominated by slowest lane

- Too slow if resync is done on every hop
- hence 2 southbound frame relay modes
" resample
- clock recovery removes bit jitter in a lane
- does not correct lane Ul skew
- spec allows a maximum of 46 UI difference between lanes
" resync
- delay retransmit until all lanes are collected
- then drive resynchronized frame

3 AMB Datapaths

- Resample and Resync
- Plus need to extract southbound command
- in case target is this DIMM
- note forward anyway style
" decode and forward if it's not for me option is intractable
- since decode time would have to be added to each southbound hop

Protocol

- Asymmetric channels
- southbound
" 10 bit lanes * 12 Ul's = 120 bits/frame
- half peak write bandwidth
- 4 Ul's for command - hence $\mathbf{8 0}$ write data bits/frame
- northbound
" 14 bit lanes * 12 Ul's = 168 bits/frame
- full peak read bandwidth of a target rank
- both contain CRC info for data recovery at receiver
" and actual data/frame is less: 72 (64+8) \& 144 (128+16)
- to support fail over mechanism (more on this soon)
- 3 common frame types

School of Computing
University of Utah

16

Frame Formats

- Southbound command only
" 3 commands/frame
- sent to independent DIMMs or ranks
- improves parallelism
- can also allow certain modules to be moved to a lower power state
- nops or platform specific debug patterns pad frame when 3 commands aren't needed
- Southbound command and write data
" command, 64 data, and 8 check bits
- 8 bits can be used as a byte mask if DIMM doesn't support ECC
" weirdness
- multiple frames are needed for a full write burst
- they do not need to be contiguous (indicates read priority model)
- each write-data subframe only contains 1 bit of the target AMB address
- 3 subframes needed to form full address (8 DIMM max spec)
- implies ALL AMB's must buffer write data before destination is known
- energy cost of writes exacerbated
- Northbound read - 1 DIMM cycle read return 128 + 16

School of Computing
University of Utah

Commands

- 2 types
- channel
" manage the AMB's
- debug
- read and write configuration register
- clock enable management
- soft channel reset
- recover when a transmission error is detected
- mem_ctir detects CRC error or AMB signals via an alert frame
- reset and then retry all writes that weren't committed
- channel sync
- insure that AMB clock recovery circuits see the min. \# of transitions
- southbound - transitions provided by mem_ctlr as fake write data
- northbound response - last DIMM sends fake read return
- must be inserted once every 42-46 frames (JEDEC standard)
- implies channel can't be powered down easily (another power defect)
- DRAM
" AMB's decode and send to DRAM devices on the DIMM

Frame and Command Scheduling

- Interesting set of choices

- master to multiple slave controllers (obvious)
- FB mem_ctir still maintains total control of:
» DRAM and frame scheduling
- minimizes logic in AMB's
- AMB's respond to channel commands w/ predictable timing
- also translates channel to DRAM commands but w/o additional scheduling
- AMB's do not
- check for DRAM protocol compliance
- does not protect against northbound frame collision
" apparent strategy
- minimize additional latency hit in the AMB daisy chain - already problematic due to the resync issue
- maintain centralized control over scheduling and DRAM timing
- AMB is less specialized for the DDRx DRAM component flavor
- AMB predictable timing response is required for this to happen anyway
- Result
- improve capacity \& bandwidth, sacrifice latency

Sample Read \& Write Transactions

A: RAS B:CAS and precharge
DRAM RAS and posted CAS scheduled to different DRAM clocks
Latency critical commands should be posted in slot A

Write data does not need to be contiguous - allows read returns to be interleaved in a write burst, write command can precede completion of write data delivery

AMB Asic

- 3 logic blocks

- northbound pass-through
- southbound pass-through
" all commands must be partially decoded
- core
" current write buffer design
- buffer 32 72-bit write data frames - allows priority for read returns
- plus buffer the $\mathbf{3}$ write data frames that must be speculatively stored
- since only 1-bit of the target AMB address is contained in each frame CRC check \& generate logic
PISO (parallel in serial out)
- serializes read returns into proper frame format on northbound lane " read return data is sync'd for seamless entry onto northbound lanes
- removes rank switching overhead seen in conventional DDRx
- maximizes read bandwidth

Typical AMB Block Diagram

SMBus: Mem_CtIr R/W access to configuration registers. Independent of high-speed N \& S lanes.

DOES NOT - allow data access if northbound lanes fail

Additional Features

- BIST
- for large capacity sequential testing is prohibitive
- BIST feature allows parallel test
- what is it really?
" several autonomous FSM's configured via the SMBus
- Thermal sensor
- 2-rank FB-Dimm and AMB consumes up to 20 watts » hence thermals can change rapidly " need
- protect the devices
- keep the thermal sensitive electrical properties in "open eye" status
- FB mem_ctlr periodically reads the thermal sensor
" throttles commands as necessary
" more centralized control

RAS Features

- Reliability, Availability, Serviceability
- Checksum in the transport layer
- CRC
" particularly needed due to timing uncertainty
- correct when a single bit lane loses phase
- resulting in burst loss on a single lane
- Bit lane steering
- lane failure happens
» most commonly caused by DIMM socket interconnect failure
- users put DIMMs in sockets
- uneven or ham-fisted pressure causes metal fatigue
- repeated thermal variations subsequently cause permanent failure
- cure
» for single lane failure steer remaining 9 lanes to the working lanes

Steering Example

- South lane failure example
- alert frame sent north
- enters error wait
- FB ctir sends soft reset
" hence must keep copies of commands and data in flight
" run training sequence to discover faulty lane
» reconfigure registers via SMBus
- failed lane does reduce CRC protection
- note
" top and bottom lanes are not protected

Southbound Fail Over Mode

- Command and write data example
- normal 10 lanes \& 120 bit frames
" 2 bits: frame type
") 24 bits: command
" 8 check or mask bits
" 22 bits of CRC
" 64 bits of data
- 9 bit lanes due to lane failure
" 22 bit CRC reduced to 10 bits
- remember 12 bits per frame per lane
" good enough to detect
- 1, 2, \& 3 bit faults
- continuous faults in another lane

Northbound Fail Over Mode

- 14 lanes - 168 bits/frame
- 128 data
" split into two groups
- 16 check
- 24 CRC
" also split into two groups to match data split
- 13 lane failover
- CRC becomes 2 6-bit groups
- 12 lane failover
- lose the check bits
- however
" in the standard
》 not currently supported by AMB ASIC
- so if $2^{\text {nd }}$ lane fails
» use 13 lane to remove data (corrected by CRC) \& quarantine

Hot Add and Replace

- Point to point signaling
- lends itself to fault isolation
- connectors are pass through if no DIMM
- Ul timing slack already built into the protocol
- Error log kept
- sysadmin notified
» direct data removal and quarantine if possible
" under quarantine power removed from faulty socket
- replace faulty DIMM
" unquarantine brings new DIMM back online

FB Dimm Performance

Component	Min (ps)	Max (ps)	Notes
A: CrIr to DIMM flight	$\mathbf{8 0 0}$	$\mathbf{1 2 0 0}$	routing distance dependent
B: SB frame resample	$\mathbf{9 0 0}$	$\mathbf{1 6 0 0}$	process dependent
C: SB DIMM- DIMM flight	$\mathbf{6 0 0}$	$\mathbf{9 0 0}$	routing distance dependent
D: Freme de- parallize	$\mathbf{5 0 0 0}$	$\mathbf{5 9 0 0}$	realign independent bit-lanes
 decode	$\mathbf{3 0 0 0}$	$\mathbf{3 0 0 0}$	AMB specific
F: DRAM access	25200	25200	tRCD+tCAS+tDQSCK+CLK_Delay
G: Data serialization	$\mathbf{4 5 0 0}$	$\mathbf{4 5 0 0}$	includes CRC generation
H: Data merge w/ NB traffic	$\mathbf{1 8 0 0}$	$\mathbf{2 8 0 0}$	time to wait for frame alignment
I: NB DIMM2DIMM flight	$\mathbf{6 0 0}$	$\mathbf{9 0 0}$	routing distance dependent
J: NB frame resync	$\mathbf{2 0 0 0}$	$\mathbf{3 2 0 0}$	may need to remerge on NB lanes
K: DIMM2CTLR flight	$\mathbf{8 0 0}$	$\mathbf{1 2 0 0}$	routing distance dependent
L: Frame-into- CTLR	$\mathbf{3 0 0 0}$	$\mathbf{3 0 0 0}$	deserialization delay

Basis: 667 MT/s DDR2 Dram

2 AMB example - actual latency increases w/ capacity e.g. \# of FB-DIMMs

Typical - $1^{\text {st }}$ FB-Dimm operates in resync - rest in resample

Fixed vs. Variable Latency Scheduling

- More FB-DIMM complexity
- Actual latency depends on where the FB-DIMM sits
» closest is fastest
» BUT different DRAM speeds are also allowed
- CTLR samples to determine properties
- Fixed
" base all timing schedules on slowest return
- each AMB responsible for placing their return to match slowest
- Variable
" DIMM puts return on as soon as it is available
" problems - you bet!!
- northbound collisions could occur
- hence limited to short channel configurations (presently)
- Extensions being studied
- there are obvious flaws in the current standard

Conclusions

- Not clear if FB-DIMM is a good idea
- improves bandwidth but additional cost and latency
" DRAM system cost is a huge concern for platform builders
- allows more capacity but w/ capacity dependent latency
» BoB designed to mitigate this
- but higher cost due to more pins
- Will Intel cut and run
- TBD
- Personal conclusion
- there just has to be a better way
" reluctance of system builders to adopt is a strong signal
- DRAM by nature is hairy
" $F B$ just made it worse
- Phew!!

