
1

Lecture 13: Consistency Models

• Topics: sequential consistency, requirements to implement
sequential consistency, relaxed consistency models

2

Coherence Vs. Consistency

• Recall that coherence guarantees (i) that a write will
eventually be seen by other processors, and (ii) write
serialization (all processors see writes to the same location
in the same order)

• The consistency model defines the ordering of writes and
reads to different memory locations – the hardware
guarantees a certain consistency model and the
programmer attempts to write correct programs with
those assumptions

3

Example Programs

Initially, A = B = 0

P1 P2
A = 1 B = 1
if (B == 0) if (A == 0)

critical section critical section

Initially, A = B = 0

P1 P2 P3
A = 1

if (A == 1)
B = 1

if (B == 1)
register = A

P1 P2
Data = 2000 while (Head == 0)
Head = 1 { }

… = Data

4

Consistency Example - I

• Consider a multiprocessor with bus-based snooping cache
coherence and a write buffer between CPU and cache

Initially A = B = 0
P1 P2

A 1 B 1
… …
if (B == 0) if (A == 0)
Crit.Section Crit.Section

The programmer expected the
above code to implement a

lock – because of write
buffering, both processors

can enter the critical section

The consistency model lets the programmer know what assumptions
they can make about the hardware’s reordering capabilities

5

Consistency Example - 2

P1 P2
Data = 2000 while (Head == 0) { }
Head = 1 … = Data

Sequential consistency requires program order
-- the write to Data has to complete before the write to Head can begin
-- the read of Head has to complete before the read of Data can begin

6

Consistency Example - 3

P1 P2 P3 P4

A = 1 A = 2 while (B != 1) { } while (B != 1) { }
B = 1 C = 1 while (C != 1) { } while (C != 1) { }

register1 = A register2 = A

• register1 and register2 having different values is a
violation of sequential consistency – possible if updates
to A appear in different orders

• Cache coherence guarantees write serialization to a
single memory location

7

Consistency Example - 4

Initially, A = B = 0

P1 P2 P3
A = 1

if (A == 1)
B = 1

if (B == 1)
register = A

Sequential consistency can be had if a process makes sure that
everyone has seen an update before that value is read – else,

write atomicity is violated

8

Implementing Atomic Updates

• The above problem can be eliminated by not allowing a
read to proceed unless all processors have seen the last
update to that location

• Easy in an invalidate-based system: memory will not service
the request unless it has received acks from all processors

• In an update-based system: a second set of messages is
sent to all processors informing them that all acks have been
received; reads cannot be serviced until the processor gets
the second message

9

Sequential Consistency

• A multiprocessor is sequentially consistent if the result
of the execution is achieveable by maintaining program
order within a processor and interleaving accesses by
different processors in an arbitrary fashion

• The multiprocessors in the previous examples are not
sequentially consistent

• Can implement sequential consistency by requiring the
following: program order, write serialization, everyone has
seen an update before a value is read – very intuitive for
the programmer, but extremely slow

10

Performance Optimizations

• Program order is a major constraint – the following try to
get around this constraint without violating seq. consistency

if a write has been stalled, prefetch the block in
exclusive state to reduce traffic when the write happens
allow out-of-order reads with the facility to rollback
if the ROB detects a violation

• Get rid of sequential consistency in the common case and
employ relaxed consistency models – if one really needs
sequential consistency in key areas, insert fence
instructions between memory operations

11

Relaxed Consistency Models

• We want an intuitive programming model (such as
sequential consistency) and we want high performance

• We care about data races and re-ordering constraints for
some parts of the program and not for others – hence,
we will relax some of the constraints for sequential
consistency for most of the program, but enforce them
for specific portions of the code

• Fence instructions are special instructions that require
all previous memory accesses to complete before
proceeding (sequential consistency)

12

Potential Relaxations

• Program Order: (all refer to different memory locations)
Write to Read program order
Write to Write program order
Read to Read and Read to Write program orders

• Write Atomicity: (refers to same memory location)
Read others’ write early

• Write Atomicity and Program Order:
Read own write early

13

Relaxations

IBM 370: a read can complete before an earlier write to a different address, but a
read cannot return the value of a write unless all processors have seen the write
SPARC V8 Total Store Ordering (TSO): a read can complete before an earlier
write to a different address, but a read cannot return the value of a write by another
processor unless all processors have seen the write (it returns the value of own
write before others see it)
Processor Consistency (PC): a read can complete before an earlier write (by any
processor to any memory location) has been made visible to all

Relaxation W R
Order

W W
Order

R RW
Order

 Rd others’ Wr
early

 Rd own Wr
early

IBM 370 X

TSO X X

PC X X X

SC X

14

Safety Nets

• To explicitly enforce sequential consistency, safety nets
or fence instructions can be used

• Note that read-modify-write operations can double up as
fence instructions – replacing the read or write with a
r-m-w effectively achieves sequential consistency – the
read and write of the r-m-w can have no intervening
operations and successive reads or successive writes
must be ordered in some of the memory models

15

Release Consistency

• RCsc relaxes constraints similar to WO, while RCpc also
allows reading others’ writes early

• More distinctions among memory operations
RCsc maintains SC between special, while RCpc
maintains PC between special ops
RCsc maintains orders: acquire all, all release,
special special
RCpc maintains orders: acquire all, all release,
special special, except for sp.wr followed by sp.rd

shared

special ordinary
sync nsync

acquire release

16

Performance Comparison

• Taken from Gharachorloo, Gupta, Hennessy, ASPLOS’91

• Studies three benchmark programs and three different
architectures:

MP3D: 3-D particle simulator
LU: LU-decomposition for dense matrices
PTHOR: logic simulator

LFC: aggressive; lockup-free caches, write buffer with
bypassing
RDBYP: only write buffer with bypassing
BASIC: no write buffer, no lockup-free caches

17

Performance Comparison

18

Summary

• Sequential Consistency restricts performance (even more
when memory and network latencies increase relative to
processor speeds)

• Relaxed memory models relax different combinations of
the five constraints for SC

• Most commercial systems are not sequentially consistent
and rely on the programmer to insert appropriate fence
instructions to provide the illusion of SC

19

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

