
1

Lecture 7: Lazy & Eager Transactional Memory

• Topics: details of “lazy” TM, scalable lazy TM,
implementation details of eager TM

2

Lazy Overview
Topics:
• Commit order
• Overheads
• Wback, WAR, WAW, RAW
• Overflow
• Parallel Commit
• Hiding Delay
• I/O
• Deadlock, Livelock, Starvation

C

P
R W

C

P
R W

C

P
R W

C

P
R W

M A

3

“Lazy” Implementation (Partially Based on TCC)

• An implementation for a small-scale multiprocessor with
a snooping-based protocol

• Lazy versioning and lazy conflict detection

• Does not allow transactions to commit in parallel

4

Handling Reads/Writes

• When a transaction issues a read, fetch the block in
read-only mode (if not already in cache) and set the
rd-bit for that cache line

• When a transaction issues a write, fetch that block in
read-only mode (if not already in cache), set the wr-bit
for that cache line and make changes in cache

• If a line with wr-bit set is evicted, the transaction must
be aborted (or must rely on some software mechanism
to handle saving overflowed data) (or must acquire
commit permissions)

5

Commit Process

• When a transaction reaches its end, it must now make
its writes permanent

• A central arbiter is contacted (easy on a bus-based system),
the winning transaction holds on to the bus until all written
cache line addresses are broadcasted (this is the commit)
(need not do a writeback until the line is evicted or written
again – must simply invalidate other readers of these lines)

• When another transaction (that has not yet begun to commit)
sees an invalidation for a line in its rd-set, it realizes its
lack of atomicity and aborts (clears its rd- and wr-bits and
re-starts)

6

Miscellaneous Properties

• While a transaction is committing, other transactions can
continue to issue read requests

• Writeback after commit can be deferred until the next
write to that block

• If we’re tracking info at block granularity, (for various
reasons), a conflict between write-sets must force an abort

7

Summary of Properties

• Lazy versioning: changes are made locally – the “master copy” is
updated only at the end of the transaction

• Lazy conflict detection: we are checking for conflicts only when one of
the transactions reaches its end

• Aborts are quick (must just clear bits in cache, flush pipeline and
reinstate a register checkpoint)

• Commit is slow (must check for conflicts, all the coherence operations
for writes are deferred until transaction end)

• No fear of deadlock/livelock – the first transaction to acquire the bus will
commit successfully

• Starvation is possible – need additional mechanisms

8

TCC Features

• All transactions all the time (the code only defines
transaction boundaries): helps get rid of the baseline
coherence protocol

• When committing, a transaction must acquire a central
token – when I/O, syscall, buffer overflow is encountered,
the transaction acquires the token and starts commit

• Each cache line maintains a set of “renamed bits” – this
indicates the set of words written by this transaction –
reading these words is not a violation and the read-bit is
not set

9

TCC Features

• Lines evicted from the cache are stored in a write buffer;
overflow of write buffer leads to acquiring the commit token

• Less tolerant of commit delay, but there is a high degree
of “coherence-level parallelism”

• To hide the cost of commit delays, it is suggested that a
core move on to the next transaction in the meantime –
this requires “double buffering” to distinguish between
data handled by each transaction

• An ordering can be imposed upon transactions – useful for
speculative parallelization of a sequential program

10

Parallel Commits

• Writes cannot be rolled back – hence, before allowing
two transactions to commit in parallel, we must ensure
that they do not conflict with each other

• One possible implementation: the central arbiter can
collect signatures from each committing transaction
(a compressed representation of all touched addresses)

• Arbiter does not grant commit permissions if it detects
a possible conflict with the rd-wr-sets of transactions
that are in the process of committing

• The “lazy” design can also work with directory protocols

11

Scalable Algorithm – Lazy Implementation

• Data is distributed across several nodes/directories

• Each node has a token

• For a transaction to commit, it must first acquire all tokens
corresponding to the data in its read and write set – this
guarantees that an invalidation will not be received while
this transaction commits

• After performing the writes, the tokens are released

• Tokens must be acquired in numerically ascending order
for deadlock avoidance – can also allow older transactions
to steal from younger transactions

12

Example

P1
T1

D1:
X Z

P2
T2

Y

Rd X
Wr X

Rd Y
Wr Z

D2:

13

“Eager” Overview
Topics:
• Logs
• Log optimization
• Conflict examples
• Handling deadlocks
• Sticky scenarios
• Aborts/commits/parallelism

C
Dir

P
R W

C
Dir

P
R W

C
Dir

P
R W

C
Dir

P
R W

Scalable Non-broadcast
Interconnect

14

“Eager” Implementation (Based Primarily on LogTM)

• A write is made permanent immediately (we do not wait
until the end of the transaction)

• Can’t lose the old value (in case this transaction is
aborted) – hence, before the write, we copy the old
value into a log (the log is some space in virtual memory
-- the log itself may be in cache, so not too expensive)

This is eager versioning

15

Versioning

• Every overflowed write first requires a read and a write to
log the old value – the log is maintained in virtual memory
and will likely be found in cache

• Aborts are uncommon – typically only when the
contention manager kicks in on a potential deadlock; the
logs are walked through in reverse order

• If a block is already marked as being logged (wr-set), the
next write by that transaction can avoid the re-log

• Log writes can be placed in a write buffer to reduce
contention for L1 cache ports

16

Conflict Detection and Resolution

• Since Transaction-A’s writes are made permanent
rightaway, it is possible that another Transaction-B’s
rd/wr miss is re-directed to Tr-A

• At this point, we detect a conflict (neither transaction has
reached its end, hence, eager conflict detection): two
transactions handling the same cache line and at least
one of them does a write

• One solution: requester stalls: Tr-A sends a NACK to
Tr-B; Tr-B waits and re-tries again; hopefully, Tr-A has
committed and can hand off the latest cache line to B

neither transaction needs to abort

17

Deadlocks

• Can lead to deadlocks: each transaction is waiting for the
other to finish

• Need a separate (hw/sw) contention manager to detect
such deadlocks and force one of them to abort

Tr-A Tr-B
write X write Y
… …
read Y read X

• Alternatively, every transaction maintains an “age” and a young
transaction aborts and re-starts if it is keeping an older transaction
waiting and itself receives a nack from an older transaction

18

Block Replacement

• If a block in a transaction’s rd/wr-set is evicted, the data
is written back to memory if necessary, but the directory
continues to maintain a “sticky” pointer to that node
(subsequent requests have to confirm that the transaction
has committed before proceeding)

• The sticky pointers are lazily removed over time (commits
continue to be fast)

19

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

