
1

Lecture 4: Directory-Based Coherence

• Details of memory-based (SGI Origin) and cache-based
(Sequent NUMA-Q) directory protocols



2

Handling Reads

• When the home receives a read request, it looks up
memory (speculative read) and directory in parallel

• Actions taken for each directory state:
shared or unowned: memory copy is clean, data
is returned to requestor, state is changed to excl if
there are no other sharers
busy: a NACK is sent to the requestor
exclusive: home is not the owner, request is fwded
to owner, owner sends data to requestor and home



3

Inner Details of Handling the Read

• The block is in exclusive state – memory may or may not
have a clean copy – it is speculatively read anyway

• The directory state is set to busy-exclusive and the
presence vector is updated

• In addition to fwding the request to the owner, the memory
copy is speculatively forwarded to the requestor

Case 1: excl-dirty: owner sends block to requestor
and home, the speculatively sent data is over-written
Case 2: excl-clean: owner sends an ack (without data)
to requestor and home, requestor waits for this ack
before it moves on with speculatively sent data



4

Inner Details II

• Why did we send the block speculatively to the requestor
if it does not save traffic or latency?

the R10K cache controller is programmed to not
respond with data if it has a block in excl-clean state
when an excl-clean block is replaced from the cache,
the directory need not be updated – hence, directory
cannot rely on the owner to provide data and
speculatively provides data on its own



5

Handling Write Requests

• The home node must invalidate all sharers and all
invalidations must be acked (to the requestor), the 
requestor is informed of the number of invalidates to expect

• Actions taken for each state:
shared: invalidates are sent, state is changed to
excl, data and num-sharers is sent to requestor,
the requestor cannot continue until it receives all acks
(Note: the directory does not maintain busy state,
subsequent requests will be fwded to new owner
and they must be buffered until the previous write
has completed)



6

Handling Writes II

• Actions taken for each state:
unowned: if the request was an upgrade and not a

read-exclusive, is there a problem?
exclusive: is there a problem if the request was an
upgrade? In case of a read-exclusive: directory is
set to busy, speculative reply is sent to requestor,
invalidate is sent to owner, owner sends data to
requestor (if dirty), and a “transfer of ownership”
message (no data) to home to change out of busy
busy: the request is NACKed and the requestor
must try again



7

Handling Write-Back

• When a dirty block is replaced, a writeback is generated
and the home sends back an ack 

• Can the directory state be shared when a writeback is
received by the directory?

• Actions taken for each directory state:
exclusive: change directory state to unowned and
send an ack
busy: a request and the writeback have crossed
paths: the writeback changes directory state to
shared or excl (depending on the busy state),
memory is updated, and home sends data to
requestor, the intervention request is dropped



8

Writeback Cases

P1 P2

D3
E: P1

Wback

This is the “normal” case
D3 sends back an Ack

Ack



9

Writeback Cases

P1 P2

D3
E: P1 

busy

Wback

If someone else has the block in exclusive, D3 moves to busy
If Wback is received, D3 serves the requester
If we didn’t use busy state when transitioning from E:P1 to E:P2, 

D3 may not have known who to service
(since ownership may have been passed on to P3 and P4…)
(although, this problem can be solved by NACKing the Wback
and having P1 buffer its “strange” intervention requests)

Fwd Rd or Wr



10

Writeback Cases

P1 P2

D3
E: P1 

busy

Transfer
ownership

If Wback is from new requester, D3 sends back a NACK
Floating unresolved messages are a problem
Alternatively, can accept the Wback and put D3 in some new busy state

Conclusion: could have got rid of busy state between E:P1 E:P2, but
with Wback ACK/NACK and other buffering
could have kept the busy state between E:P1 E:P2, could
have got rid of ACK/NACK, but need one new busy state

Fwd Wback

Data



11

Serialization

• Note that the directory serializes writes to a location, but
does not know when a write/read has completed at any
processor

• For example, a read reply may be floating on the network
and may reach the requestor much later – in the meantime,
the directory has already issued a number of invalidates,
the invalidate is overwritten when the read reply finally
shows up – hence, each node must buffer its requests
until outstanding requests have completed



12

Sequent NUMA-Q

• Employs a flat cache-based directory protocol between nodes –
IEEE standard SCI (Scalable Coherent Interface) protocol

• Each node is a 4-way SMP with a bus-based snooping protocol

• The communication assist includes a large “remote access cache”
– the directory protocol tries to keep the remote caches coherent,
while the snooping protocol ensures that each processor cache is
kept coherent with the remote access cache and local-mem

C C C C

Local
Mem

CA

RAC Network

P P P P



13

Directory Structure

• The physical address identifies the home node – the home
node directory stores a pointer to the head of a linked list –
each cache stores pointers to the next and previous sharer

• A main memory block can be in three directory states:
Home: (similar to unowned) the block does not exist
in any remote access cache (may be in the home
node’s processor caches, though)
Fresh: (similar to shared) read-only copies exist in
remote access caches and memory copy is up-to-date
Gone: (similar to exclusive) writeable copy exists in
some remote cache



14

Cache Structure

• 29 stable states and many more pending/busy states!

• The stable states have two descriptors:
position in linked list: ONLY, HEAD, TAIL, MID
state within cache: dirty, clean, fresh, valid, etc.

• SCI defines and implements primitive operations to
facilitate linked list manipulations:

List construction: add a new node to the list head
Rollout: remove a node from a list
Purging: invoked by the head to invalidate all
other nodes



15

Handling Read Requests

• On a read miss, the remote cache sets up a block in busy
state and other requests to the block are not entertained

• The requestor sends a “list construction request” to the
home and the steps depend on the directory state:

Home: state updated to fresh, head updated to
requestor, data sent to requestor, state at requestor
is set to ONLY_FRESH
Fresh: head updated to requestor, home responds
with data and pointer to old head, requestor moves to
a different busy state, sends list construction request
to old head, old head moves from HEAD_FRESH to
MID_VALID, sends ack, requestor HEAD_FRESH



16

Handling Read Requests II

Gone: home does not reply with data, it remains in Gone
state, sends old head pointer to requestor, requestor
moves to a different busy state, asks old head for data
and “list construction”, old head moves from HEAD_DIRTY
to MID_VALID, returns data, requestor moves to
HEAD_DIRTY (note that HEAD_DIRTY does not mean
exclusive access; the head can write without talking to
the home, but sharers must be invalidated)

Home keeps forwarding requests to head even if head
is busy – this results in a pending linked list that is
handled as transactions complete



17

Handling Write Requests

• At all times, the head of a list is assumed to have the
latest copy and only the head is allowed to write

• The writer starts by moving itself to the head of the list;
actions depend on the state in the cache:

HEAD_DIRTY: the home is already in GONE state,
so home is not informed, sharing list is purged (each
list element invalidates itself and informs the
requestor of the next element – simple, but slow –
works well for small invalidation sizes)



18

Handling Write Requests II

HEAD_FRESH: home directory is updated from FRESH
to GONE, sharing list is purged; if the home directory is
not in FRESH state, some other node’s request is in
flight – the requestor will have to move to the head again
and retry

ONLY_DIRTY: the write happens without generating any
interconnect traffic



19

Writeback & Replacement

• Replacements are no longer “quiet” as the linked lists
have to be updated – the “rollout” operation is used

• To rollout, a node must set itself to pending, inform the
neighbors, and set itself to invalid – to prevent deadlock
in the case of two neighbors attempting rollout, the node
closer to the tail is given priority

• If the node is the head, it makes the next element the
head and informs home



20

Writeback & Replacement II

• If the head is attempting a rollout, it sends a message home,
but the home is pointing to a different head: the old head
will eventually receive a request from the new head – at
this point, the writeback is complete, and the new head
is instead linked with the next node

• To reduce buffering needs, the writeback happens before
the new block is fetched



21

Serialization

• The home serves as the point of serialization – note that
requests are almost never NACKed – requests are 
usually re-directed to the current head – helps avoid
race conditions

• Since requests get queued in a pending list and buffers
are rarely used, the protocol is less prone to 
starvation, unfairness, deadlock, and livelock problems



22

Title

• Bullet


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22

