
1

Lecture 3: Directory-Based Coherence

• Basic operations, memory-based and cache-based
directories



2

Multi-Core Cache Organizations

P

C

P

C

P

C

P

C

P

C

P

C

P

C

P

C

CCC CCC

CCC CCC

Private L1 caches
Shared L2 cache
Bus between L1s and single L2 cache controller
Snooping-based coherence between L1s



3

Multi-Core Cache Organizations

Private L1 caches
Shared L2 cache, but physically distributed
Scalable network
Directory-based coherence between L1s

P

C

P

C

P

C

P

C

P

C

P

C

P

C

P

C



4

Multi-Core Cache Organizations

Private L1 caches
Shared L2 cache, but physically distributed
Bus connecting the four L1s and four L2 banks
Snooping-based coherence between L1s

P

C

P

C

P

C

P

C



5

Multi-Core Cache Organizations

Private L1 caches
Private L2 caches
Scalable network
Directory-based coherence between L2s
(through a separate directory)

P

C

P

C

P

C

P

C

P

C

P

C

P

C

P

C

D



6

Scalable Multiprocessors

P1

C1

Mem 1 CA1

P2

C2

Mem 2 CA2

Pn

Cn

Mem n CAn

Scalable interconnection network

CC NUMA: Cache coherent non-uniform memory access



7

Directory-Based Protocol

• For each block, there is a centralized “directory” that
maintains the state of the block in different caches

• The directory is co-located with the corresponding memory

• Requests and replies on the interconnect are no longer
seen by everyone – the directory serializes writes

P

C

Mem CADir

P

C

Mem CADir



8

Definitions

• Home node: the node that stores memory and directory
state for the cache block in question

• Dirty node: the node that has a cache copy in modified state

• Owner node: the node responsible for supplying data
(usually either the home or dirty node)

• Also, exclusive node, local node, requesting node, etc.
P

C

Mem CADir

P

C

Mem CADir



9

Protocol Steps

P1

C1

Mem 1 CA1

P2

C2

Mem 2 CA2

Pn

Cn

Mem n CAn

Scalable interconnection network

• What happens on a read miss and a write miss?
• How is information stored in a directory?

Dir Dir Dir



10

Directory Organizations

• Centralized Directory: one fixed location – bottleneck!

• Flat Directories: directory info is in a fixed place, 
determined by examining the address – can be further
categorized as memory-based or cache-based

• Hierarchical Directories: the processors are organized as a
logical tree structure and each parent keeps track of which
of its immediate children has a copy of the block – less
storage (?), more searching, can exploit locality



11

Flat Memory-Based Directories

• Directory is associated with memory and stores info
for all cache copies

• A presence vector stores a bit for every processor, for
every memory block – the overhead is a function of 
memory/block size and #processors

• Reducing directory overhead:



12

Flat Memory-Based Directories

• Directory is associated with memory and stores info
for all cache copies

• A presence vector stores a bit for every processor, for
every memory block – the overhead is a function of 
memory/block size and #processors

• Reducing directory overhead:
Width: pointers (keep track of processor ids of sharers)
(need overflow strategy), 2-level protocol to combine
info for multiple processors
Height: increase block size, track info only for blocks
that are cached (note: cache size << memory size)



13

Flat Cache-Based Directories

• The directory at the memory home node only stores a
pointer to the first cached copy – the caches store
pointers to the next and previous sharers (a doubly linked
list)

Main memory

Cache 7 Cache 3 Cache 26



14

Flat Cache-Based Directories

• The directory at the memory home node only stores a
pointer to the first cached copy – the caches store
pointers to the next and previous sharers (a doubly linked
list)

• Potentially lower storage, no bottleneck for network traffic

• Invalidates are now serialized (takes longer to acquire
exclusive access), replacements must update linked list,
must handle race conditions while updating list



15

Flat Memory-Based Directories

Main memory

Cache 1 Cache 2 Cache 64

…

…

Block size = 128 B
Memory in each node = 1 GB
Cache in each node = 1 MB

For 64 nodes and 64-bit directory,
Directory size = 4 GB

For 64 nodes and 12-bit directory,
Directory size = 0.75 GB



16

Flat Cache-Based Directories

Main memory…

Block size = 128 B
Memory in each node = 1 GB
Cache in each node = 1 MB

6-bit storage in DRAM for each block;
DRAM overhead = 0.375 GB

12-bit storage in SRAM for each block;
SRAM overhead = 0.75 MB

Cache 7 Cache 3 Cache 26



17

Flat Memory-Based Directories

L2 cache

L1 Cache 1 L1 Cache 2 L1 Cache 64

…

…

Block size = 64 B
L2 cache in each node = 1 MB
L1 Cache in each node = 64 KB

For 64 nodes and 64-bit directory,
Directory size = 8 MB

For 64 nodes and 12-bit directory,
Directory size = 1.5 MB



18

Flat Cache-Based Directories

Main memory…

6-bit storage in L2 for each block;
L2 overhead = 0.75 MB

12-bit storage in L1 for each block;
L1 overhead = 96 KB

Cache 7 Cache 3 Cache 26

Block size = 64 B
L2 cache in each node = 1 MB
L1 Cache in each node = 64 KB



19

Data Sharing Patterns

• Two important metrics that guide our design choices:
invalidation frequency and invalidation size – turns out
that invalidation size is rarely greater than four

• Read-only data: constantly read, never updated (raytrace)

• Producer-consumer: flag-based synchronization, updates
from neighbors (Ocean)

• Migratory: reads and writes from a single processor for a
period of time (global sum)

• Irregular: unpredictable accesses (distributed task queue)



20

Protocol Optimizations

C1 C2

Mem

1 2

3

4

5

C1 C2

Mem

1
2 34

C1 C2

Mem

1
2

3

4

Intervention Forwarding Reply Forwarding

Request Response

C1 attempts to read
a block that is in

Modified state in C2



21

SGI Origin 2000

• Flat memory-based directory protocol

• Uses a bit vector directory representation

• Two processors per node – combining multiple processors
in a node reduces cost

P

L2

CA

M/D

P

L2

Interconnect



22

Protocol States

• Each memory block has seven states

• Three stable states: unowned, shared, exclusive (either
dirty or clean)

• Three busy states indicate that the home has not
completed the previous request for that block 
(read, read-excl or upgrade, uncached read)

• Poison state – used for lazy TLB shootdown



23

Directory Structure

• The system supports either a 16-bit or 64-bit directory
(fixed cost)

• For small systems, the directory works as a full bit
vector representation

• For larger systems, a coarse vector is employed – each
bit represents p/64 nodes

• State is maintained for each node, not each processor –
the communication assist broadcasts requests to both
processors



24

Handling Reads

• When the home receives a read request, it looks up
memory (speculative read) and directory in parallel

• Actions taken for each directory state:
shared or unowned: memory copy is clean, data
is returned to requestor, state is changed to excl if
there are no other sharers
busy: a NACK is sent to the requestor
exclusive: home is not the owner, request is fwded
to owner, owner sends data to requestor and home



25

Inner Details of Handling the Read

• The block is in exclusive state – memory may or may not
have a clean copy – it is speculatively read anyway

• The directory state is set to busy-exclusive and the
presence vector is updated

• In addition to fwding the request to the owner, the memory
copy is speculatively forwarded to the requestor

Case 1: excl-dirty: owner sends block to requestor
and home, the speculatively sent data is over-written
Case 2: excl-clean: owner sends an ack (without data)
to requestor and home, requestor waits for this ack
before it moves on with speculatively sent data



26

Inner Details II

• Why did we send the block speculatively to the requestor
if it does not save traffic or latency?

the R10K cache controller is programmed to not
respond with data if it has a block in excl-clean state
when an excl-clean block is replaced from the cache,
the directory need not be updated – hence, directory
cannot rely on the owner to provide data and
speculatively provides data on its own



27

Handling Write Requests

• The home node must invalidate all sharers and all
invalidations must be acked (to the requestor), the 
requestor is informed of the number of invalidates to expect

• Actions taken for each state:
shared: invalidates are sent, state is changed to
excl, data and num-sharers is sent to requestor,
the requestor cannot continue until it receives all acks
(Note: the directory does not maintain busy state,
subsequent requests will be fwded to new owner
and they must be buffered until the previous write
has completed)



28

Handling Writes II

• Actions taken for each state:
unowned: if the request was an upgrade and not a

read-exclusive, is there a problem?
exclusive: is there a problem if the request was an
upgrade? In case of a read-exclusive: directory is
set to busy, speculative reply is sent to requestor,
invalidate is sent to owner, owner sends data to
requestor (if dirty), and a “transfer of ownership”
message (no data) to home to change out of busy
busy: the request is NACKed and the requestor
must try again



29

Title

• Bullet


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29

