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Lecture 2: Snooping-Based Coherence

• 3-state and 4-state snooping protocols, update protocol,
implementation issues 
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Multi-Core Cache Organizations
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Private L1 caches
Shared L2 cache
Bus between L1s and single L2 cache controller
Snooping-based coherence between L1s
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Multi-Core Cache Organizations

Private L1 caches
Shared L2 cache, but physically distributed
Scalable network
Directory-based coherence between L1s
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Multi-Core Cache Organizations

Private L1 caches
Shared L2 cache, but physically distributed
Bus connecting the four L1s and four L2 banks
Snooping-based coherence between L1s
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Multi-Core Cache Organizations

Private L1 caches
Private L2 caches
Scalable network
Directory-based coherence between L2s
(through a separate directory)
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Cache Coherence

A multiprocessor system is cache coherent if

• a value written by a processor is eventually visible to
reads by other processors – write propagation

• two writes to the same location by two processors are
seen in the same order by all processors – write 
serialization
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Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
status of that block – all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies
Write-update: when a processor writes, it updates other
shared copies of that block
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Protocol-I   MSI

• 3-state write-back invalidation bus-based snooping protocol

• Each block can be in one of three states – invalid, shared,
modified (exclusive)

• A processor must acquire the block in exclusive state in
order to write to it – this is done by placing an exclusive
read request on the bus – every other cached copy is
invalidated

• When some other processor tries to read an exclusive
block, the block is demoted to shared
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Design Issues, Optimizations

• When does memory get updated?
demotion from modified to shared?
move from modified in one cache to modified in another?

• Who responds with data?  – memory or a cache that has
the block in exclusive state – does it help if sharers respond?

• We can assume that bus, memory, and cache state
transactions are atomic – if not, we will need more states

• A transition from shared to modified only requires an upgrade
request and no transfer of data

• Is the protocol simpler for a write-through cache?
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4-State Protocol

• Multiprocessors execute many single-threaded programs

• A read followed by a write will generate bus transactions
to acquire the block in exclusive state even though there
are no sharers

• Note that we can optimize protocols by adding more
states – increases design/verification complexity
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MESI Protocol

• The new state is exclusive-clean – the cache can service
read requests and no other cache has the same block

• When the processor attempts a write, the block is
upgraded to exclusive-modified without generating a bus
transaction

• When a processor makes a read request, it must detect
if it has the only cached copy – the interconnect must
include an additional signal that is asserted by each
cache if it has a valid copy of the block
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Design Issues

• When caches evict blocks, they do not inform other
caches – it is possible to have a block in shared state
even though it is an exclusive-clean copy

• Cache-to-cache sharing: SRAM vs. DRAM latencies,
contention in remote caches, protocol complexities
(memory has to wait, which cache responds), can be
especially useful in distributed memory systems

• The protocol can be improved by adding a fifth
state (owner – MOESI) – the owner services reads
(instead of memory)
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Update Protocol (Dragon)

• 4-state write-back update protocol, first used in the
Dragon multiprocessor (1984)

• Write-back update is not the same as write-through –
on a write, only caches are updated, not memory

• Goal: writes may usually not be on the critical path, but
subsequent reads may be
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4 States

• No invalid state 

• Modified and Exclusive-clean as before: used when there
is a sole cached copy

• Shared-clean: potentially multiple caches have this block
and main memory may or may not be up-to-date

• Shared-modified: potentially multiple caches have this
block, main memory is not up-to-date, and this cache
must update memory – only one block can be in Sm state

• In reality, one state would have sufficed – more states
to reduce traffic



15

Design Issues

• If the update is also sent to main memory, the Sm
state can be eliminated

• If all caches are informed when a block is evicted, the
block can be moved from shared to M or E – this can
help save future bus transactions

• Having an extra wire to determine exclusivity seems
like a worthy trade-off in update systems
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State Transitions

To
From

NP I E S M

NP 0 0 1.25 0.96 1.68
I 0.64 0 0 1.87 0.002
E 0.20 0 14.0 0.02 1.00
S 0.42 2.5 0 134.7 2.24
M 2.63 0.002 0 2.3 843.6

To
From

NP I E S M

NP -- -- BusRd BusRd BusRdX
I -- -- BusRd BusRd BusRdX
E -- -- -- -- --
S -- -- Not possible -- BusUpgr
M BusWB BusWB Not possible BusWB --

State transitions
per 1000 data

memory references
for Ocean

Bus actions
for each state

transition

NP – Not Present
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Snooping – Basic Implementation

• Assume single level of cache, atomic bus transactions

• It is simpler to implement a processor-side cache
controller that monitors requests from the processor and
a bus-side cache controller that services the bus

• Both controllers are constantly trying to read tags
tags can be duplicated (moderate area overhead)
unlike data, tags are rarely updated
tag updates stall the other controller
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Reporting Snoop Results

• In a multiprocessor, memory has to wait for the snoop
result before it chooses to respond – need 3 wired-OR
signals: (i) indicates that a cache has a copy, (ii) indicates
that a cache has a modified copy, (iii) indicates that the
snoop has not completed

• Ensuring timely snoops: the time to respond could be
fixed or variable (with the third wired-OR signal), or the
memory could track if a cache has a block in M state
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Non-Atomic State Transitions

• Note that a cache controller’s actions are not all atomic: tag
look-up, bus arbitration, bus transaction, data/tag update

• Consider this: block A in shared state in P1 and P2; both
issue a write; the bus controllers are ready to issue an
upgrade request and try to acquire the bus; is there a
problem?

• The controller can keep track of additional intermediate
states so it can react to bus traffic (e.g. S M, I M, I S,E)

• Alternatively, eliminate upgrade request; use the shared
wire to suppress memory’s response to an exclusive-rd
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Livelock

• Livelock can happen if the processor-cache handshake
is not designed correctly

• Before the processor can attempt the write, it must
acquire the block in exclusive state

• If all processors are writing to the same block, one of
them acquires the block first – if another exclusive request
is seen on the bus, the cache controller must wait for the
processor to complete the write before releasing the block
-- else, the processor’s write will fail again because the
block would be in invalid state
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Split Transaction Bus

• What would it take to implement the protocol correctly
while assuming a split transaction bus?

• Split transaction bus: a cache puts out a request, releases
the bus (so others can use the bus), receives its response
much later

• Assumptions:
only one request per block can be outstanding
separate lines for addr (request) and data (response)
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Split Transaction Bus

Proc 1

Cache

Proc 2

Cache

Proc 3

Cache

Request lines

Response lines
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Design Issues

• When does the snoop complete? What if the snoop takes
a long time?

• What if the buffer in a processor/memory is full? When
does the buffer release an entry? Are the buffers identical?

• How does each processor ensure that a block does not
have multiple outstanding requests?

• What determines the write order – requests or responses?
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Design Issues II

• What happens if a processor is arbitrating for the bus and
witnesses another bus transaction for the same address?

• If the processor issues a read miss and there is already a
matching read in the request table, can we reduce bus
traffic?
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Title

• Bullet
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