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Lecture 1: Introduction

• Course organization:
13 lectures on parallel architectures

~5 lectures on cache coherence, consistency
~3 lectures on TM
~2 lectures on interconnection networks
~2 lectures on large cache hierarchies
~1 lecture on parallel algorithms

10 lectures on memory systems  (taught by Al)
5 lectures: student presentations related to course

project



2

Logistics

• Texts: Parallel Computer Architecture, Culler, Singh, Gupta
Principles and Practices of Interconnection Networks,

Dally & Towles
Introduction to Parallel Algorithms and Architectures,

Leighton
Transactional Memory, Larus & Rajwar
Memory Systems: Cache, DRAM, Disk,  Jacob et al.

• Multi-threaded programming assignment due in Feb

• Final project report due in early May (will undergo
conference-style peer reviewing)
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More Logistics

• Sign up for 7810 (3 credits)  or  for 7960 (2 credits)

• Projects: simulation-based, creative, be prepared to
spend time towards end of semester – more details on
simulators in a few weeks

• Grading:
50% project
20% multi-thread programming assignment
10% paper presentation
20% take-home final
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Parallel Architecture Trends

Source: Mark Hill, Ravi Rajwar
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CMP/SMT Papers

• CMP/SMT/Multiprocessor papers in recent conferences:

2001    2002     2003     2004      2005      2006      2007

ISCA:      3          5           8           6           14         17          19

HPCA:     4         6            7          3           11          13          14
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Bottomline

• Can’t escape multi-cores today: it is the baseline
architecture

• Performance stagnates unless we learn to transform
traditional applications into parallel threads

• It’s all about the data!
Data management: distribution, coherence, consistency

• It’s also about the programming model: onus on
application writer / compiler / hardware

• It’s also about managing on-chip communication
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Multi-Core Cache Organizations
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Private L1 caches
Shared L2 cache
Bus between L1s and single L2 cache controller
Snooping-based coherence between L1s
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Multi-Core Cache Organizations

Private L1 caches
Shared L2 cache, but physically distributed
Scalable network
Directory-based coherence between L1s
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Multi-Core Cache Organizations

Private L1 caches
Shared L2 cache, but physically distributed
Bus connecting the four L1s and four L2 banks
Snooping-based coherence between L1s
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Multi-Core Cache Organizations

Private L1 caches
Private L2 caches
Scalable network
Directory-based coherence between L2s
(through a separate directory)
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Shared-Memory Vs. Message Passing

• Shared-memory
single copy of (shared) data in memory
threads communicate by reading/writing to a shared
location

• Message-passing
each thread has a copy of data in its own private
memory that other threads cannot access
threads communicate by passing values with SEND/
RECEIVE message pairs
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Shared Memory Architectures

• Key differentiating feature: the address space is shared,
i.e., any processor can directly address any memory
location and access them with load/store instructions

• Cooperation is similar to a bulletin board – a processor
writes to a location and that location is visible to reads
by other threads
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Shared Address Space
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Message Passing

• Programming model that can apply to clusters of workstations, SMPs,
and even a uniprocessor

• Sends and receives are used for effecting the data transfer – usually,
each process ends up making a copy of data that is relevant to it

• Each process can only name local addresses, other processes, and
a tag to help distinguish between multiple messages

• A send-receive match is a synchronization event – hence, we no
longer need locks or barriers to co-ordinate
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Models for SEND and RECEIVE

• Synchronous: SEND returns control back to the program
only when the RECEIVE has completed

• Blocking Asynchronous: SEND returns control back to the
program after the OS has copied the message into its space
-- the program can now modify the sent data structure

• Nonblocking Asynchronous: SEND and RECEIVE return
control immediately – the message will get copied at some
point, so the process must overlap some other computation
with the communication – other primitives are used to
probe if the communication has finished or not
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Deterministic Execution

• Need synch after every anti-diagonal
• Potential load imbalance

• Shared-memory vs. message passing 
• Function of the model for SEND-RECEIVE
• Function of the algorithm: diagonal, red-black ordering
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Ocean Kernel

Procedure Solve(A)
begin
diff = done = 0;
while (!done) do

diff = 0;
for i 1 to n do

for j 1 to n do
temp = A[i,j];
A[i,j] 0.2 * (A[i,j] + neighbors);
diff += abs(A[i,j] – temp);

end for
end for
if (diff < TOL) then done = 1;

end while
end procedure 
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Shared Address Space Model

int  n, nprocs;
float  **A, diff;
LOCKDEC(diff_lock);
BARDEC(bar1);

main()
begin

read(n); read(nprocs);
A G_MALLOC();
initialize (A);
CREATE (nprocs,Solve,A);
WAIT_FOR_END (nprocs);

end main

procedure Solve(A)
int i, j, pid, done=0;
float temp, mydiff=0;
int mymin = 1 + (pid * n/procs);
int mymax = mymin + n/nprocs -1;
while (!done) do

mydiff = diff = 0;
BARRIER(bar1,nprocs);
for i mymin to mymax

for j 1 to n do
…

endfor
endfor
LOCK(diff_lock);
diff += mydiff;
UNLOCK(diff_lock);
BARRIER (bar1, nprocs);
if (diff < TOL) then done = 1;
BARRIER (bar1, nprocs);

endwhile
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Message Passing Model

main()
read(n); read(nprocs);
CREATE (nprocs-1, Solve);
Solve();
WAIT_FOR_END (nprocs-1);

procedure Solve()
int i, j, pid, nn = n/nprocs, done=0;
float temp, tempdiff, mydiff = 0;
myA malloc(…)
initialize(myA);
while (!done) do

mydiff = 0;
if (pid != 0) 

SEND(&myA[1,0], n, pid-1, ROW);
if (pid != nprocs-1)

SEND(&myA[nn,0], n, pid+1, ROW);
if (pid != 0)

RECEIVE(&myA[0,0], n, pid-1, ROW);
if (pid != nprocs-1)

RECEIVE(&myA[nn+1,0], n, pid+1, ROW);

for i 1 to nn do
for j 1 to n do

…
endfor

endfor
if (pid != 0)

SEND(mydiff, 1, 0, DIFF);
RECEIVE(done, 1, 0, DONE);

else
for i 1 to nprocs-1 do

RECEIVE(tempdiff, 1, *, DIFF);
mydiff += tempdiff;

endfor
if  (mydiff < TOL)  done = 1;
for i 1 to nprocs-1  do

SEND(done, 1, I, DONE);
endfor

endif
endwhile
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Title

• Bullet
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