
1

Lecture 1: Introduction

• Course organization:
13 lectures on parallel architectures

~5 lectures on cache coherence, consistency
~3 lectures on TM
~2 lectures on interconnection networks
~2 lectures on large cache hierarchies
~1 lecture on parallel algorithms

10 lectures on memory systems (taught by Al)
5 lectures: student presentations related to course

project

2

Logistics

• Texts: Parallel Computer Architecture, Culler, Singh, Gupta
Principles and Practices of Interconnection Networks,

Dally & Towles
Introduction to Parallel Algorithms and Architectures,

Leighton
Transactional Memory, Larus & Rajwar
Memory Systems: Cache, DRAM, Disk, Jacob et al.

• Multi-threaded programming assignment due in Feb

• Final project report due in early May (will undergo
conference-style peer reviewing)

3

More Logistics

• Sign up for 7810 (3 credits) or for 7960 (2 credits)

• Projects: simulation-based, creative, be prepared to
spend time towards end of semester – more details on
simulators in a few weeks

• Grading:
50% project
20% multi-thread programming assignment
10% paper presentation
20% take-home final

4

Parallel Architecture Trends

Source: Mark Hill, Ravi Rajwar

5

CMP/SMT Papers

• CMP/SMT/Multiprocessor papers in recent conferences:

2001 2002 2003 2004 2005 2006 2007

ISCA: 3 5 8 6 14 17 19

HPCA: 4 6 7 3 11 13 14

6

Bottomline

• Can’t escape multi-cores today: it is the baseline
architecture

• Performance stagnates unless we learn to transform
traditional applications into parallel threads

• It’s all about the data!
Data management: distribution, coherence, consistency

• It’s also about the programming model: onus on
application writer / compiler / hardware

• It’s also about managing on-chip communication

7

Multi-Core Cache Organizations

P

C

P

C

P

C

P

C

P

C

P

C

P

C

P

C

CCC CCC

CCC CCC

Private L1 caches
Shared L2 cache
Bus between L1s and single L2 cache controller
Snooping-based coherence between L1s

8

Multi-Core Cache Organizations

Private L1 caches
Shared L2 cache, but physically distributed
Scalable network
Directory-based coherence between L1s

P

C

P

C

P

C

P

C

P

C

P

C

P

C

P

C

9

Multi-Core Cache Organizations

Private L1 caches
Shared L2 cache, but physically distributed
Bus connecting the four L1s and four L2 banks
Snooping-based coherence between L1s

P

C

P

C

P

C

P

C

10

Multi-Core Cache Organizations

Private L1 caches
Private L2 caches
Scalable network
Directory-based coherence between L2s
(through a separate directory)

P

C

P

C

P

C

P

C

P

C

P

C

P

C

P

C

D

11

Shared-Memory Vs. Message Passing

• Shared-memory
single copy of (shared) data in memory
threads communicate by reading/writing to a shared
location

• Message-passing
each thread has a copy of data in its own private
memory that other threads cannot access
threads communicate by passing values with SEND/
RECEIVE message pairs

12

Shared Memory Architectures

• Key differentiating feature: the address space is shared,
i.e., any processor can directly address any memory
location and access them with load/store instructions

• Cooperation is similar to a bulletin board – a processor
writes to a location and that location is visible to reads
by other threads

13

Shared Address Space

Shared

Private

Private

Private

Process P1

Process P2

Process P3

Shared

Shared

Shared

Pvt P1

Pvt P2

Pvt P3

Virtual address space
of each process

Physical address space

14

Message Passing

• Programming model that can apply to clusters of workstations, SMPs,
and even a uniprocessor

• Sends and receives are used for effecting the data transfer – usually,
each process ends up making a copy of data that is relevant to it

• Each process can only name local addresses, other processes, and
a tag to help distinguish between multiple messages

• A send-receive match is a synchronization event – hence, we no
longer need locks or barriers to co-ordinate

15

Models for SEND and RECEIVE

• Synchronous: SEND returns control back to the program
only when the RECEIVE has completed

• Blocking Asynchronous: SEND returns control back to the
program after the OS has copied the message into its space
-- the program can now modify the sent data structure

• Nonblocking Asynchronous: SEND and RECEIVE return
control immediately – the message will get copied at some
point, so the process must overlap some other computation
with the communication – other primitives are used to
probe if the communication has finished or not

16

Deterministic Execution

• Need synch after every anti-diagonal
• Potential load imbalance

• Shared-memory vs. message passing
• Function of the model for SEND-RECEIVE
• Function of the algorithm: diagonal, red-black ordering

17

Ocean Kernel

Procedure Solve(A)
begin
diff = done = 0;
while (!done) do

diff = 0;
for i 1 to n do

for j 1 to n do
temp = A[i,j];
A[i,j] 0.2 * (A[i,j] + neighbors);
diff += abs(A[i,j] – temp);

end for
end for
if (diff < TOL) then done = 1;

end while
end procedure

18

Shared Address Space Model

int n, nprocs;
float **A, diff;
LOCKDEC(diff_lock);
BARDEC(bar1);

main()
begin

read(n); read(nprocs);
A G_MALLOC();
initialize (A);
CREATE (nprocs,Solve,A);
WAIT_FOR_END (nprocs);

end main

procedure Solve(A)
int i, j, pid, done=0;
float temp, mydiff=0;
int mymin = 1 + (pid * n/procs);
int mymax = mymin + n/nprocs -1;
while (!done) do

mydiff = diff = 0;
BARRIER(bar1,nprocs);
for i mymin to mymax

for j 1 to n do
…

endfor
endfor
LOCK(diff_lock);
diff += mydiff;
UNLOCK(diff_lock);
BARRIER (bar1, nprocs);
if (diff < TOL) then done = 1;
BARRIER (bar1, nprocs);

endwhile

19

Message Passing Model

main()
read(n); read(nprocs);
CREATE (nprocs-1, Solve);
Solve();
WAIT_FOR_END (nprocs-1);

procedure Solve()
int i, j, pid, nn = n/nprocs, done=0;
float temp, tempdiff, mydiff = 0;
myA malloc(…)
initialize(myA);
while (!done) do

mydiff = 0;
if (pid != 0)

SEND(&myA[1,0], n, pid-1, ROW);
if (pid != nprocs-1)

SEND(&myA[nn,0], n, pid+1, ROW);
if (pid != 0)

RECEIVE(&myA[0,0], n, pid-1, ROW);
if (pid != nprocs-1)

RECEIVE(&myA[nn+1,0], n, pid+1, ROW);

for i 1 to nn do
for j 1 to n do

…
endfor

endfor
if (pid != 0)

SEND(mydiff, 1, 0, DIFF);
RECEIVE(done, 1, 0, DONE);

else
for i 1 to nprocs-1 do

RECEIVE(tempdiff, 1, *, DIFF);
mydiff += tempdiff;

endfor
if (mydiff < TOL) done = 1;
for i 1 to nprocs-1 do

SEND(done, 1, I, DONE);
endfor

endif
endwhile

20

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

