
1

Lecture 20: Speculation

Papers:
• Is SC+ILP=RC?, Purdue, ISCA’99
• Coherence Decoupling: Making Use of Incoherence,

Wisconsin, ASPLOS’04
• Selective, Accurate, and Timely Self-Invalidation using

Last Touch Prediction, Purdue, ISCA’00

2

Consistency: Summary

• To preserve sequential consistency:
hardware must preserve program order for all
memory operations (including waiting for acks)
writes to a location must be serialized
the value of a write cannot be read unless all have
seen the write (it is ok if writes to different locations
are not seen in the same order as long as conflicting
reads do not happen)

3

Relaxations

IBM 370: a read can complete before an earlier write to a different address, but a
read cannot return the value of a write unless all processors have seen the write
SPARC V8 Total Store Ordering (TSO): a read can complete before an earlier
write to a different address, but a read cannot return the value of a write by another
processor unless all processors have seen the write (it returns the value of own
write before others see it)
Processor Consistency (PC): a read can complete before an earlier write (by any
processor to any memory location) has been made visible to all

Relaxation W R
Order

W W
Order

R RW
Order

 Rd others’ Wr
early

 Rd own Wr
early

IBM 370 X

TSO X X

PC X X X

4

Release Consistency

More distinctions among memory operations:

• Instructions are classified as non-special and special and
special instructions are further classified as acquires and
releases

• All instructions after an acquire can begin only after the
acquire has completed

• A release can begin only after all previous instructions have
completed

5

An Out-of-Order Processor Implementation

Branch prediction
and instr fetch

R1 R1+R2
R2 R1+R3

BEQZ R2
R3 R1+R2
R1 R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1 R1+R2
T2 T1+R3

BEQZ T2
T4 T1+T2
T5 T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags
broadcast to IQ

6

SC Execution

• The world hasn’t yet seen A
• Ld-B should really execute only when
it reaches the head of the ROB

• Can execute early, but when it reaches
the head of the ROB, it must make sure
that the read value is still valid

• A table can keep track of speculatively
read values and flag a violation if it
detects a write (similar to LL-SC)

• An overflow will conservatively flag a
violation

• No problem if Ld-C executes sooner
than Ld-B

St A

Ld B

Ld C

ROB

7

SC Execution

• Ld-A hasn’t yet executed
• St-B can acquire permissions early –
if the permissions are lost before the
store reaches the ROB head,
permissions are re-acquired

• St-B can also write the result into the
cache/memory early, but the old
value must be preserved somewhere;
if someone else asks for the data, a
violation is flagged

Ld A

St B

St C

ROB

8

Three Implementations

• SC:
Loads can execute speculatively, but must check during commit
Relatively small ROB size can hold up commit
Stores can fetch permissions speculatively

• RC:
Software-assigned constraints
Orderings allowed among non-special ops
Loads can execute speculatively across fences (as in SC)

• SC++:
Stores are allowed to write to cache early (old values are
maintained in a log)
Instructions are copied out of ROB into a Speculative History
Queue SHiQ (effectively, provides a much larger ROB)
(Long latency loads can tie up the ROB, but long-latency stores
can not)
To check for conflicts, a Block Look-up Table (BLT) maintains
the relevant block addresses for instructions in the SHiQ

9

Results

10

Violations

• Violations are caused by
true sharing: two threads that r/w the same word
false sharing: two threads that r/w the same block
conflict/capacity misses in the cache: if a block is
evicted, a violation is conservatively flagged

• Violations are caused by
a speculative load that gets written to by another node
a speculative load and the block is evicted from cache
a speculative store that is accessed by another node
before it commits (need not cause rollback; just have
to re-acquire permissions when ready to commit)

11

Coherence Decoupling

• In addition to the correct cache coherence protocol,
introduce a Speculative Cache Lookup (SCL) protocol

• In essence, value prediction for the coherence protocol

• Mechanisms incorporated for correct SC execution can
be leveraged to handle violations

• SC++ allows us to overlap memory instructions; but for a
load, cannot proceed with execution until data+perms arrive

• Coherence decoupling attempts to pass the results of the
load to dependents before arrival of permissions/data

12

Coherence Decoupling

Why it works:
• False sharing: the line is invalidated, but the relevant word is unchanged
• Speculative updates: updated values are selectively pushed to improve

the chances of finding correct data

13

Read and Update Components

• Filter: branch-pred-like confidence mechanism to avoid mis-speculations
• IA: send data with invalidation message (higher bw cost)
• C: send data only if it is {-1, 0, 1}

14

Potential and Accuracy

15

Performance

16

Self Invalidation

• To reduce the cost of invalidating shared blocks, blocks can
“prefetch” this effect by invalidating themselves in advance

• Can perform self invalidation when leaving a critical section

• Can perform self invalidation by observing the sequence of
instructions that eventually lead to the last touch (truncated
addition is used to generate a signature) (may require
complex branch predictor-like structures)

• Cache decay predictors have good accuracy in a
single-threaded setting… may have similar benefits in
multi-threaded settings as well

17

Summary

• May need large windows to hide the cost of long memory
operations

• Can overlap operations, can speculate on values

• Will need checks to make sure SC is not violated and
values are speculated correctly

18

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

