
1

Lecture 5: Directory Protocols

• Topics: directory-based cache coherence implementations



2

Flat Memory-Based Directories

Main memory

Cache 1 Cache 2 Cache 64

…

…

Block size = 128 B
Memory in each node = 1 GB
Cache in each node = 1 MB

For 64 nodes and 64-bit directory,
Directory size = 4 GB

For 64 nodes and 12-bit directory,
Directory size = 0.75 GB



3

Flat Memory-Based Directories

L2 cache

L1 Cache 1 L1 Cache 2 L1 Cache 64

…

…

Block size = 64 B
L2 cache in each node = 1 MB
L1 Cache in each node = 64 KB

For 64 nodes and 64-bit directory,
Directory size = 8 MB

For 64 nodes and 12-bit directory,
Directory size = 1.5 MB



4

Flat Cache-Based Directories

Main memory…

Block size = 128 B
Memory in each node = 1 GB
Cache in each node = 1 MB

6-bit storage in DRAM for each block;
DRAM overhead = 0.375 GB

12-bit storage in SRAM for each block;
SRAM overhead = 0.75 MB

Cache 7 Cache 3 Cache 26



5

Flat Cache-Based Directories

Main memory…

6-bit storage in L2 for each block;
L2 overhead = 0.75 MB

12-bit storage in L1 for each block;
L1 overhead = 96 KB

Cache 7 Cache 3 Cache 26

Block size = 64 B
L2 cache in each node = 1 MB
L1 Cache in each node = 64 KB



6

Flat Cache-Based Directories

• The directory at the memory home node only stores a
pointer to the first cached copy – the caches store
pointers to the next and previous sharers (a doubly linked
list)

• Potentially lower storage, no bottleneck for network traffic,

• Invalidates are now serialized (takes longer to acquire
exclusive access), replacements must update linked list,
must handle race conditions while updating list



7

Serializing Writes for Coherence

• Potential problems: updates may be re-ordered by the
network; General solution: do not start the next write until
the previous one has completed

• Strategies for buffering writes:
buffer at home: requires more storage at home node
buffer at requestors: the request is forwarded to the
previous requestor and a linked list is formed
NACK and retry: the home node nacks all requests
until the outstanding request has completed



8

SGI Origin 2000

• Flat memory-based directory protocol

• Uses a bit vector directory representation

• Two processors per node, but there is no snooping
protocol within a node – combining multiple processors
in a node reduces cost

P

L2

CA

M/D

P

L2

Interconnect



9

Protocol States

• Each memory block has seven states

• Three stable states: unowned, shared, exclusive (either
dirty or clean)

• Three busy states indicate that the home has not
completed the previous request for that block 
(read, read-excl or upgrade, uncached read)

• Poison state – used for lazy TLB shootdown



10

Handling Reads

• When the home receives a read request, it looks up
memory (speculative read) and directory in parallel

• Actions taken for each directory state:
shared or unowned: memory copy is clean, data
is returned to requestor, state is changed to excl if
there are no other sharers
busy: a NACK is sent to the requestor
exclusive: home is not the owner, request is fwded
to owner, owner sends data to requestor and home



11

Inner Details of Handling the Read

• The block is in exclusive state – memory may or may not
have a clean copy – it is speculatively read anyway

• The directory state is set to busy-exclusive and the
presence vector is updated

• In addition to fwding the request to the owner, the memory
copy is speculatively forwarded to the requestor

Case 1: excl-dirty: owner sends block to requestor
and home, the speculatively sent data is over-written
Case 2: excl-clean: owner sends an ack (without data)
to requestor and home, requestor waits for this ack
before it moves on with speculatively sent data



12

Inner Details II

• Why did we send the block speculatively to the requestor
if it does not save traffic or latency?

the R10K cache controller is programmed to not
respond with data if it has a block in excl-clean state
when an excl-clean block is replaced from the cache,
the directory need not be updated – hence, directory
cannot rely on the owner to provide data and
speculatively provides data on its own



13

Handling Write Requests

• The home node must invalidate all sharers and all
invalidations must be acked (to the requestor), the 
requestor is informed of the number of invalidates to expect

• Actions taken for each state:
shared: invalidates are sent, state is changed to
excl, data and num-sharers is sent to requestor,
the requestor cannot continue until it receives all acks
(Note: the directory does not maintain busy state,
subsequent requests will be fwded to new owner
and they must be buffered until the previous write
has completed)



14

Handling Writes II

• Actions taken for each state:
unowned: if the request was an upgrade and not a

read-exclusive, is there a problem?
exclusive: is there a problem if the request was an
upgrade? In case of a read-exclusive: directory is
set to busy, speculative reply is sent to requestor,
invalidate is sent to owner, owner sends data to
requestor (if dirty), and a “transfer of ownership”
message (no data) to home to change out of busy
busy: the request is NACKed and the requestor
must try again



15

Handling Write-Back

• When a dirty block is replaced, a writeback is generated
and the home sends back an ack 

• Can the directory state be shared when a writeback is
received by the directory?

• Actions taken for each directory state:
exclusive: change directory state to unowned and
send an ack
busy: a request and the writeback have crossed
paths: the writeback changes directory state to
shared or excl (depending on the busy state),
memory is updated, and home sends data to
requestor, the intervention request is dropped



16

Serialization

• Note that the directory serializes writes to a location, but
does not know when a write/read has completed at any
processor

• For example, a read reply may be floating on the network
and may reach the requestor much later – in the meantime,
the directory has already issued a number of invalidates,
the invalidate is overwritten when the read reply finally
shows up – hence, each node must buffer its requests
until outstanding requests have completed



17

Serialization - II

• Assume that a dirty block is being passed from P1 to
another writer P2, the “ownership transfer” message from 
P1 to home takes a long time, P2 receives its data and
carries on, P2 does a writeback protocol must be
designed to handle this case correctly

If the writeback is from the node that placed the directory
in busy state, the writeback is NACKed

(If instead, the writeback was allowed to proceed, at
some later point, if the directory was expecting an
“ownership transfer”, it may mis-interpret the “floating”
message)



18

Directory Structure

• The system supports either a 16-bit or 64-bit directory
(fixed cost)

• For small systems, the directory works as a full bit
vector representation

• For larger systems, a coarse vector is employed – each
bit represents p/64 nodes

• State is maintained for each node, not each processor –
the communication assist broadcasts requests to both
processors



19

Page Migration

• Each page in memory has an array of counters to detect
if a page has more misses from a node other than home

• When a page is moved to a different physical memory
location, the virtual address remains the same, but the
page table and TLBs must be updated

• To reduce the cost of TLB shootdown, the old page sets
its directory state to poisoned – if a process tries to access
this page, the OS intervenes and updates the translation



20

Title

• Bullet


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

